Skip to main content

Dynamical Stochastic Modeling of Turbulence

  • Conference paper
Turbulence in Fluid Flows

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 55))

Abstract

Fully developed Navier-Stokes turbulence has proved resistant to methods of contemporary nonlinear dynamics that have been successful for small systems. An irreducibly large number of modes is excited in high-Reynolds-number turbulence. A set of tools that permits some progress is dynamical stochastic modeling, by which I mean the exact solution of model dynamical systems that have some relation to the true dynamics. The fact that a system is being solved exactly ensures some important consistency properties. Dynamical stochastic models whose tractability comes from intrinsic randomicity have given qualitatively and, in some cases, quantitatively good approximations to major features of fully developed turbulence: sensitivity to initial conditions, eddy viscosity, spectral energy cascade, and vorticity intensification. The present brief summary outlines three kinds of stochastic models: systems with random coupling coefficients, decimation models, and a new kind of stochastic model based on nonlinear mapping of Gaussian fields into dynamically evolving non-Gaussian fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Chen, S. Chen and R. H. Kraichnan, Phys. Rev. Lett. 63 (1989), p. 2657.

    Article  Google Scholar 

  2. H. Chen, J. R. Herring, R. M. Kerr and R. H. Kraichnan, Phys. Fluids A, 1 (1989), p. 1844.

    Article  MATH  Google Scholar 

  3. J. R. Herring and R. H. Kraichnan, in Statistical Models and Turbulence, edited by M. Rosenblatt and C. Van Atta, Springer-Verlag, New York, 1972.

    Google Scholar 

  4. Y. Kaneda, J. Fluid Mech. 107 (1989), p. 131.

    Article  Google Scholar 

  5. R. H. Kraichnan, J. Fluid Mech. 5 (1959), p. 497.

    Article  MathSciNet  MATH  Google Scholar 

  6. -, J. Math. Phys. 2 (1961), p. 124.

    Article  MathSciNet  MATH  Google Scholar 

  7. -, Phys. Fluids 7 (1964), p. 1030.

    Article  MathSciNet  Google Scholar 

  8. -, Phys. Fluids 7 (1964), p. 1723.

    Article  MathSciNet  MATH  Google Scholar 

  9. -, Phys. Fluids 9 (1966), p. 1728.

    Article  MATH  Google Scholar 

  10. -, Phys. Fluids 10 (1967), p. 2081.

    Google Scholar 

  11. -, J. Fluid Mech. 41 (1970), p. 189.

    Article  MathSciNet  MATH  Google Scholar 

  12. -, J. Fluid Mech. 83 (1977), p. 349.

    Article  MathSciNet  MATH  Google Scholar 

  13. -, in Theoretical Approaches to Turbulence, edited by D. L. Dwoyer, M. Y. Hussaini and R. G. Voight, Springer-Verlag, New York, 1985.

    Google Scholar 

  14. -, in Current Trends in Turbulence Research, edited by H. Branover, M. Mond and Y. Unger, American Inst. of Aeronautics, Washington, 1988, p. 198.

    Google Scholar 

  15. -, Phys. Rev. Lett. 65 (1990), p. 575.

    Article  MathSciNet  MATH  Google Scholar 

  16. -, in New Perspectives in Turbulence, edited by L. Sirovich, Springer-Verlag, New York, 1990.

    Google Scholar 

  17. - and S. Chen, Physica D 37 (1989), p. 160.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. C. Leslie, Developments in the Theory of Turbulence, Oxford University Press, 1973.

    Google Scholar 

  19. S. B. Pope, private communication.

    Google Scholar 

  20. H. A. Rose and P. L. Sulem, J. Physique 39 (1978), p. 441.

    MathSciNet  Google Scholar 

  21. L. Shtilman and W. Polifke, Physics of Fluids A, 1 (1989), p. 778.

    Article  Google Scholar 

  22. T. Williams, E. R. Tracy and G. Vahala, Phys. Rev. Lett. 59 (1987), p. 1922.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Kraichnan, R.H. (1993). Dynamical Stochastic Modeling of Turbulence. In: Sell, G.R., Foias, C., Temam, R. (eds) Turbulence in Fluid Flows. The IMA Volumes in Mathematics and its Applications, vol 55. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4346-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4346-5_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8743-8

  • Online ISBN: 978-1-4612-4346-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics