Skip to main content

Spatial and Temporal Aspects of Populations Revealed by Mitochondrial DNA

  • Chapter
Ancient DNA

Abstract

The evolutionary analysis of DNA sequences bridges phylogenetics and population genetics. Ancient DNA (aDNA) allows the study of extinct genotypes, populations, and species, as well as dichronic comparisons of extant populations and species. Thus aDNA forges an empirical link between history and two inherently historical fields of research. Fortunately, the conceptual frameworks of phylogenetics and population genetics can easily be extended to encompass advances being made in the study of aDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aquadro CF, Kaplan N, Risko KJ (1984) An analysis of the dynamics of mammalian mitochondrial DNA sequence evolution. Mol Biol and Evol 5:423–434

    Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–521

    Google Scholar 

  • Bibb M, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of the mouse mitochondrial DNA. Cell 26:167–180

    Article  PubMed  CAS  Google Scholar 

  • Birky CW Jr (1991) Evolution and population genetics of organelle genes: mechanisms and models. In: Selander RK, Clark AG, Whittam TS (eds) Evolution at the Molecular Level. Sunderland Mass.: Sinauer, pp. 112–134

    Google Scholar 

  • Birky CW Jr, Maruyama T, Fuerst P (1983) An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts and some results. Genetics 103:513–527.

    PubMed  Google Scholar 

  • Birky CW Jr, Fuerst P, Maruyama T (1989) Organelle gene diversity under migration, mutation and drift: equilibrium expectations, approaches to equilibrium, effects of heteroplasmic cells, and comparisons to nuclear genes. Genetics 121:613–627

    PubMed  Google Scholar 

  • Brown WM (1985) The mitochondrial genome of animals. In: MacIntyre RJ (ed) Molecular Evolutionary Genetics, New York: Plenum Press, pp. 95–130

    Google Scholar 

  • Brown GG, Simpson MV (1982) Novel features of animal mtDNA evolution as shown by sequences of two cytochrome oxidase subunit II genes. Proc Natl Acad Sci USA 79:3246–3250

    Article  PubMed  CAS  Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad USA 76:1967–1971

    Article  CAS  Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequence of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    Article  PubMed  CAS  Google Scholar 

  • Carpenter JM (1988) Choosing among multiple equally parsimonious cladograms. Cladistics 4:291–296

    Article  Google Scholar 

  • Carson HL (1975) The genetics of speciation at the diploid level. Am Naturalist 109:83–92

    Article  Google Scholar 

  • Carson HL (1982) Speciation as a major reorganization of polygenic balances. In: Barigozzi C (ed) Mechanisms of Speciation. New York: Alan R. Liss, pp. 411–433

    Google Scholar 

  • Clegg MT, Learn GH, Golenberg EM (1991) Molecular evolution of chloroplast DNA. In: Selander RK, Clark AG, Whittam TS (eds) Evolution at the Molecular Level. Sunderland, Mass.: Sinauer, pp. 135–149

    Google Scholar 

  • Cracraft J, Helm-Bychowski K (1991) Parsimony and phylogenetic inference using DNA sequences: some methodological strategies. In: Miyamoto MM, Cracraft J (eds) Phylogenetic Analysis of DNA Sequences. Oxford: Oxford Univ. Press, pp. 184–220

    Google Scholar 

  • DeSalle R, Freedman T, Prager EM, Wilson AC (1987) Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J Mol Evol 26:157–164

    Article  PubMed  CAS  Google Scholar 

  • Donoghue MJ, Doyle JA, Gauthier J, Kluge AG, Rowe T (1989) The importance of fossils in phylogeny reconstruction. Annu Rev Ecol Syst 20:431–460

    Article  Google Scholar 

  • Dover G (1987) DNA turnover and the molecular clock. J Mol Evol 26:47–58

    Article  PubMed  CAS  Google Scholar 

  • Endler JA (1977) Geographic Variation, Speciation and Clines. Princeton, N.J.: Princeton Univ. Press

    Google Scholar 

  • Farris JS (1983) The logical basis of phylogenetic analysis. In: Platnick NI, Funk VA (eds) Advances in Cladistics, vol 2. New York: Columbia Univ. Press, pp. 7–36

    Google Scholar 

  • Felsenstein J (1978) The number of evolutionary trees. Syst Zool 27:27–33

    Article  Google Scholar 

  • Felsenstein J (1979) Alternative methods of phylogenetic inference and their interrelationship. Syst Zool 28:49–62

    Article  Google Scholar 

  • Felsenstein J (1983) Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 14:313–333

    Article  Google Scholar 

  • Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP 3.2 Manual. Berkeley, Cal.: Univ. of California Herbarium

    Google Scholar 

  • Gillespie JH (1991) The Causes of Molecular Evolution. Oxford: Oxford Univ. Press

    Google Scholar 

  • Golenberg EM (1991) Amplification and analysis of Miocene plant fossil DNA. Phil Trans R Soc Lond B 333:419–426

    Article  CAS  Google Scholar 

  • Gyllensten U. Wharton D, Joseffson A, Wilson AC (1992) Paternal inheritance of mitochondrial DNA in mice. Nature (London) 352:255–357

    Article  Google Scholar 

  • Hafner JC, Hafner MS (1983) Evolutionary relationships of heteromyid rodents. Great Basin Naturalist Memoirs 7:3–29

    Google Scholar 

  • Harrison RC (1990) Hybrid zones: windows on evolutionary processes. In: Futuyama D, Antonovics J (eds) Oxford Surveys in Evolutionary Biology, vol 7. Oxford: Oxford Univ. Press, pp. 69–128

    Google Scholar 

  • Hendy MD, Penny D (1989) A framework for the quantitative study of evolutionary trees. Syst Zool 38:297–309

    Article  Google Scholar 

  • Hennig W (1965) Phylogenetic systematics. Annu Rev Entomol 10:97–116

    Article  Google Scholar 

  • Hey J (1991) The structure of genealogies and the distribution of fixed differences between DNA sequence samples from natural populations. Genetics 128:831–840

    PubMed  CAS  Google Scholar 

  • Hillis DM (1991) Discriminating between phylogenetic signal and random noise in DNA sequences. In: Miyamoto MM, Cracraft J (eds) Phylogenetic Analysis of DNA Sequences. Oxford: Oxford Univ. Press, pp. 278–294

    Google Scholar 

  • Hillis D, Huelsenbeck J (1992) Signal, noise, and reliability in molecular phylogenetic analysis. Jour Hered 83:189–195

    CAS  Google Scholar 

  • Hudson RR (1990) Gene genealogies and the coalescent process. In: Futuyma D, Antonovics J (eds) Oxford Surveys in Evolutionary Biology, vol. 7. Oxford: Oxford Univ. Press, pp. 1–44

    Google Scholar 

  • Irwin D, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144

    Article  PubMed  CAS  Google Scholar 

  • Kaplan NL, Hudson RR, Langley CH (1989) The “hitchhiking effect” revisited. Genetics 123:887–899

    PubMed  CAS  Google Scholar 

  • Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge: Cambridge Univ. Press

    Google Scholar 

  • Kocher TD, Wilson AC (1991) Sequence evolution of mitochondrial DNA in humans and chimpanzees: control region and a protein coding region. In: Osawa S, Honjo T (eds) Evolution of Life. Tokyo: Springer-Verlag, pp. 391–413

    Google Scholar 

  • Kreitman M (1991) Detecting selection at the level of DNA. In: Selander RK, Clark AG, Whittam TS (eds) Evolution at the Molecular Level. Sunderland, Mass.: Sinauer, pp. 204–221

    Google Scholar 

  • Lessa EP (1992) Rapid surveying of DNA sequence variation in natural populations. Mol Biol Evol 9:323–330

    PubMed  CAS  Google Scholar 

  • Lewontin RC (1985) Population genetics. In: Greenwood PJ, Harvey PH, Slatkin M (eds) Evolution: Essays in the Honor of John Maynard Smith. Cambridge: Cambridge Univ. Press, pp. 3–18

    Google Scholar 

  • Lewontin RC (1991) Twenty-five years ago in genetics: electrophoresis in the development of evolutionary genetics—milestone or millstone? Genetics 128:657–662

    PubMed  CAS  Google Scholar 

  • Maddison WP, Donoghue MJ, Maddison DR (1984) Outgroup analysis and parsimony. Syst Zool 33:83–103

    Article  Google Scholar 

  • Mayr E (1954) Change of genetic environment and evolution. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a Process. New York: MacMillan, pp. 157–180

    Google Scholar 

  • Mayr E (1963) Animal Species and Evolution. Cambridge, Mass.: Harvard Univ. Press

    Google Scholar 

  • Miyamoto MM, Boyle SM (1989) The potential importance of mitochondrial DNA sequences to eutherian mammal phylogeny. In: Fernholm B, Bremer K, Jörnvall H (eds) The Hierarchy of Life. Amsterdam: Elsevier, pp. 437–450

    Google Scholar 

  • Moritz C, Dowling TE, Brown WM (1987) Evolution of mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Syst 18:269–292

    Article  Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. New York: Columbia Univ. Press

    Google Scholar 

  • Ohta T (1987) Very slight deleterious mutations and the molecular clock. J Mol Evol 26:1–6

    Article  PubMed  CAS  Google Scholar 

  • Orrego C (1990) Organizing a laboratory for PCR work. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A Guide to Methods and Applications. San Diego: Academic Press, pp. 447–454

    Google Scholar 

  • Pääbo S (1989) Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci USA 86:1939–1943

    Article  PubMed  Google Scholar 

  • Pääbo S (1990) Amplifying ancient DNA. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A Guide to Methods and Applications. San Diego: Academic Press, pp. 159–166

    Google Scholar 

  • Pääbo S, Wilson AC (1988) Polymerase chain reaction reveals cloning artefacts. Nature (London) 334:387–388

    Article  Google Scholar 

  • Pääbo S, Irwin DM, Wilson AC (1990) DNA damage promotes jumping between templates during enzymatic amplification. J Biol Chem 265:4718–4721

    PubMed  Google Scholar 

  • Palumbi SR (1989) Rates of molecular evolution and the number of nucleotide positions free to vary. J Mol Evol 29:180–187

    Article  PubMed  CAS  Google Scholar 

  • Pamilo P, Nei M (1988) Relationship between gene trees and species trees. Mol Biol Evol 5:568–583

    PubMed  CAS  Google Scholar 

  • Runnegar B (1991) Nucleic acid and protein clocks. Phil Trans R Soc Lond B 333: 391–397

    Article  CAS  Google Scholar 

  • Sanderson MJ, Donoghue DJ (1989) Patterns of variation in levels of homoplasy. Evolution 43:1781–1795

    Article  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Slatkin M (1987) The average number of sites separating DNA sequences drawn from a subdivided population. Theor Popul Biol 32:42–49

    Article  PubMed  CAS  Google Scholar 

  • Slatkin M (1989) Detecting small amounts of gene flow from phylogenies of alleles. Genetics 121:609–612

    PubMed  CAS  Google Scholar 

  • Slatkin M (1991) Inbreeding coefficients and coalescence times. Genet Res Camb 58:167–175

    Article  CAS  Google Scholar 

  • Slatkin M, Maddison WP (1989) A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics 123:602–613

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, 2nd ed. New York: Freeman, W.H.

    Google Scholar 

  • Spaulding WG (1990) Vegetational and climatic development of the Mojave Desert: the last glacial maximum to the present. In: Betancourt JL, Van Devender TR, Martin PS (eds) Packrat Middens, Tucson: Univ. of Arizona Press, pp. 166–199

    Google Scholar 

  • Swofford DL (1989) Phylogenetic analysis using parsimony (ver. 3.0). Illinois Natural History Survey

    Google Scholar 

  • Swofford DL, Olsen GJ (1990) Phylogeny reconstruction. In: Hillis DM, Moritz C (eds) Molecular Systematics. Sunderland Mass: Sinauer, pp. 411–501

    Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in a finite population. Genetics 105:437–460

    PubMed  CAS  Google Scholar 

  • Tajima F (1989a) Statistical method for testing the neutral mutation hypothesis of DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tajima F (1989b) The effect of change in population size on DNA polymorphism. Genetics 123:597–601

    PubMed  CAS  Google Scholar 

  • Takahata N (1987) On the overdispersed molecular clock. Genetics 116:169–179

    PubMed  CAS  Google Scholar 

  • Takahata N, Slatkin M (1990) Genealogy of neutral genes in two partially isolated populations. Theor Popul Biol 38:331–350

    Article  PubMed  CAS  Google Scholar 

  • Thomas RH, Schaffner W, Wilson AC, Pääbo S (1989) DNA phylogeny of the extinct marsupial wolf. Nature (London) 340:465–467

    Article  CAS  Google Scholar 

  • Thomas WK, Pääbo S, Villablanca FX, Wilson AC (1990) Spacial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens. J Mol Evol 31:101–112

    Article  PubMed  CAS  Google Scholar 

  • Villablanca FX, Thomas WK (1993) Empirical limits to the phylogenetic utility of DNA sequences. M.S. submitted

    Google Scholar 

  • Walsh SP, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10:506–513

    PubMed  CAS  Google Scholar 

  • Watrous LE, Wheeler QD (1981) The outgroup comparison method of character analysis. Syst Zool 30:1–11

    Article  Google Scholar 

  • Wiley EO (1981) Phylogenetics: The Theory and Practice of Phylogenetic Systematics. New York: Wiley

    Google Scholar 

  • Wilson AC, Cann RL, Carr SM, George M, Gyllensten UR, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26:375–400

    Article  Google Scholar 

  • Wilson AC, Zimmer EA, Prager EM, Kocher TD (1989) Restriction mapping in the molecular systematics of mammals: a retrospective salute. In: Fernholm B, Bremer K, Jörnvall H (eds) The Hierarchy of Life. Amsterdam: Elsevier, pp. 407–419

    Google Scholar 

  • Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  PubMed  CAS  Google Scholar 

  • Wood AE (1935) Evolution and relationships of the heteromyid rodents with new forms from the Tertiary of western North America. Ann Carnegie Mus 24: 73–262

    Google Scholar 

  • Wright S (1969) Evolution and the Genetics of Populations, vol 2. Chicago: University of Chicago Press

    Google Scholar 

  • Zuckerkandl E (1987) On the molecular evolutionary clock. J Mol Evol 26:34–46

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Villablanca, F.X. (1994). Spatial and Temporal Aspects of Populations Revealed by Mitochondrial DNA. In: Herrmann, B., Hummel, S. (eds) Ancient DNA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4318-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4318-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94308-4

  • Online ISBN: 978-1-4612-4318-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics