Advertisement

Ancient DNA pp 237-256 | Cite as

DNA from Plant Compression Fossils

  • Edward M. Golenberg

Abstract

Evolutionary biology is a historical science. It seeks to understand the series of events that have led from a prior state or condition to a new, and hence derived, state or condition. In this quest, emphasis may be placed either on the reconstruction of the sequential order of events and the proper identification of intermediate states, or on the elucidation of the processes that led up to these events. In either approach, whether it is the pattern of events itself or the biological process that led to the pattern that is of interest, we need to assume the existence of a prior state, an origin where the evolutionary journey began and where the scientific journey must begin as well.

Keywords

Nucleotide Substitution Extant Taxon Relative Rate Test Phil Trans Seed Fern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausubel FM, Brent R, Kingston R, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1991) Current Protocols in Molecular Biology. New York: Greene Publishing Associates and Wiley-InterscienceGoogle Scholar
  2. Baschnagel RA (1966) New fossil algae from the Middle Devonian of New York. Trans Amer Microsc Soc 85:297–302CrossRefGoogle Scholar
  3. Baxter RW (1950) Peltastrobus reedae: A new sphenopsid cone from the Pennsylvanian of Indiana. Bot Gaz 112:174–182CrossRefGoogle Scholar
  4. Brack-Hanes SD, Vaughn JC (1978) Evidence of paleozoic chromosomes from lycopod microgametophytes. Science 200:1383–1385PubMedCrossRefGoogle Scholar
  5. Bradely WH (1962) Chloroplast in Spirogyra from the Green River formation of Wyoming. Amer J Sci 260:455–459CrossRefGoogle Scholar
  6. Clark AG (1990) Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol 7:111–122PubMedGoogle Scholar
  7. Curry GB, Cusack M, Walton D, Endo K, Clegg H, Abbott G, Armstrong H (1991) Biogeochemistry of brachiopod intracrystalline molecules. Phil Trans R Soc Lond B 333:359–366CrossRefGoogle Scholar
  8. Darrah WC (1938) A remarkable fossil Selanginella with preserved gametophyte. Botanical Museum Leaflets, Harvard University 6:113–136Google Scholar
  9. Eckert KA, Kunkel TA (1991) DNA polymerase fidelity and the polymerase chain reaction. PCR 1:17–24Google Scholar
  10. Eglinton G, Logan GA (1991) Molecular preservation. Phil Trans R Soc Lond B 333:315–328CrossRefGoogle Scholar
  11. Gillespie JH (1986) Variability of evolutionary rates of DNA. Genetics 113:1077–1091PubMedGoogle Scholar
  12. Golenberg EM (1991) Amplification and analysis of Miocene plant fossil DNA. Phil Trans R Soc Lond B 333:419–427CrossRefGoogle Scholar
  13. Golenberg EM, Giannassi DE, Clegg MT, Smiley CJ, Durbin M, Henderson D, Zurawski G (1990) Chloroplast DNA sequence from a Miocene Magnolia species. Nature 344:656–658PubMedCrossRefGoogle Scholar
  14. Gould RE (1971) Lyssoxylon grigsbyi, a cycad trunk from the upper Triassic of Arizona and New Mexico. Amer J Bot 58:239–248CrossRefGoogle Scholar
  15. Hagelberg E, Clegg JB (1991) Isolation and characterization of DNA from archaeological bone. Proc R Soc Lond B 244:45–50CrossRefGoogle Scholar
  16. Hagelberg E, Sykes B, Hedges R (1989) Ancient bone DNA amplified. Nature 342:485PubMedCrossRefGoogle Scholar
  17. Hagelberg E, Bell LS, Allen T, Boyde A, Jones SJ, Clegg JB (1991) Analysis of ancient bone DNA: techniques and applications. Phil Trans R Soc Lond B 333:399–407CrossRefGoogle Scholar
  18. Hänni C, Laudet V, Sakka M, Begue A, Stehelin D (1990) Amplification of mitochondrial DNA fragments from ancient human teeth and bones. C r Acad Sci Paris, Ser III. 310:365–370PubMedGoogle Scholar
  19. Higuchi R, Bowman M, Friedberger M, Ryder OA, Wilson AC (1984) DNA sequences from the quagga, an extinct member of the horse family. Nature 312:282–284PubMedCrossRefGoogle Scholar
  20. Horai S, Kondo R, Murayama K, Hayashi S, Koike H, Nakai N (1991) Phylogenetic affiliation of ancient and contemporary humans inferred from mitochondrial DNA. Phil Trans R Soc Lond B 333:409–417CrossRefGoogle Scholar
  21. Hummel S, Herrmann B (1991) Y-Chromosome-specific DNA amplified in ancient human bone. Naturwissenschaften 78:266–267PubMedCrossRefGoogle Scholar
  22. Jeffreys A (1979) DNA sequence variants in Gγ, Aγ-, δ- and β-globin genes of man. Cell 18:1–10PubMedCrossRefGoogle Scholar
  23. Kimura M (1983) The neutral theory of molecular evolution. In: Nei M, Koehn RK (eds) Evolution of Genes and Proteins. Sunderland, Mass.: Sinauer Associates.Google Scholar
  24. Kimura M (1987) Molecular evolutionary clock and neutral theory. J Mol Evol 26:24–33PubMedCrossRefGoogle Scholar
  25. Krebbers ET, Larrinua IM, McIntosh L, Bogorad L (1982) The maize chloroplast genes for the β and ε, subunits of the photosynthetic coupling factor CFI are fused. Nucl Acids Res 10:4985–5002PubMedCrossRefGoogle Scholar
  26. Kreitman M, Landweber LF (1989) A strategy for producing single-stranded DNA in the polymerase chain reaction: a direct method for genomic sequencing. Gene Anal Tech 6:84–88PubMedCrossRefGoogle Scholar
  27. Lawlor DA, Dickel CD, Hauswirth WW, Parham P (1991) Ancient HLA genes from 7,500-year-old archaeological remains. Nature 349:785–788PubMedCrossRefGoogle Scholar
  28. Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221PubMedGoogle Scholar
  29. Li W-H, Tanimura M (1987) The molecular clock runs more slowly in man than in apes and monkeys. Nature 326:93–96PubMedCrossRefGoogle Scholar
  30. Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochem 11:3610–3618CrossRefGoogle Scholar
  31. Mamay SH (1957) Biscalithea, a new genus of Pennsylvanian coenopterids, based on its fructification. Am J Bot 44:229–239CrossRefGoogle Scholar
  32. Millay MA, Eggert DA (1974) Microgametophyte development in the paleozoic seed fern family Callistophytaceae. Am J Bot 61:1067–1075CrossRefGoogle Scholar
  33. Miyata T, Yasunaga T, Yamawaki-Kataoka Y, Obata M, Honjo T (1980) Nucleotide sequence divergence of mouse immunoglobulin γ1, and γ2b chain genes and the hypothesis of intervening sequence-mediated domain transfer. Proc Natl Acad Sci USA 77:2143–2147PubMedCrossRefGoogle Scholar
  34. Murray MG, Thompson WF (1990) Rapid isolation of high-molecular-weight plant DNA. Nucl Acid Res 8:4321CrossRefGoogle Scholar
  35. Niklas KJ (1983) Organelle preservation and protoplast partitioning in fossil angiosperm leaf tissues. Am J Bot 70:543–548CrossRefGoogle Scholar
  36. Niklas KJ, Brown RM Jr., Santos R, Vian B (1978) Ultrastructure and cytochemistry of Miocene angiosperm leaf tissues. Proc Natl Acad Sci USA 75:3263–3267PubMedCrossRefGoogle Scholar
  37. Niklas KJ, Brown RM Jr., Santos R (1985) Ultrastructural states of preservation in Clarkia angiosperm leaf tissues: implications on modes of fossilization. In: Smiley CJ (ed) Late Cenozoic History of the Pacific Northwest. San Francisco: Pacific Division of the American Association for the Advancement of Science, pp. 143–160Google Scholar
  38. Ohta T (1983) On the evolution of multigene families. Theor Pop Biol 23:216–240CrossRefGoogle Scholar
  39. Pääbo S (1985a) Molecular cloning of ancient Egyptian mummy DNA. Nature 314:644–645PubMedCrossRefGoogle Scholar
  40. Pääbo S (1985b) Preservation of DNA in ancient Egyptian mummies. J Archeol Sci 12:411–417CrossRefGoogle Scholar
  41. Pääbo S (1989) Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci USA 86:1939–1943PubMedCrossRefGoogle Scholar
  42. Pääbo S (1990) Amplifying ancient DNA. In: Innis UA, Gelfiand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A Guide to Methods and Applications. San Diego: Academic Press, pp. 159–166Google Scholar
  43. Pääbo S, Wilson AC (1991) Miocene DNA sequences—a dream come true? Current Biology 45–46Google Scholar
  44. Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76CrossRefGoogle Scholar
  45. Samols SB, Fuller CW (1991) Using cycled labeling reactions for cycle sequencing. Comments 18:23–25Google Scholar
  46. Sarich VM, Wilson AC (1973) Generation time and genomic evolution in primates. Science 179:1144–1147PubMedCrossRefGoogle Scholar
  47. Schopf JW (1968) Microflora of the bitter springs formation, late Precambrian, central Australia. J Paleont 42:651–688Google Scholar
  48. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049PubMedGoogle Scholar
  49. Soltis PS, Soltis DE, Smiley CJ (1992) An rbcL sequence from a Miocene Taxodium (bald cypress). Proc Natl Acad Sci USA 89:449–451PubMedCrossRefGoogle Scholar
  50. Stevens NE (1912) A palm from the upper Cretaceous of New Jersey. Am J Sci 34:421–436CrossRefGoogle Scholar
  51. Syvanen M (1986) Cross-species gene transfer: a major factor in evolution? TIG 2:63–66CrossRefGoogle Scholar
  52. Thomas WK, Pääbo S, Villablanca FX, Wilson AC (1990) Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens. J Mol Evol 31:101–112PubMedCrossRefGoogle Scholar
  53. Tracy S (1981) Improved rapid methodology for the isolation of nucleic acids from agarose gels. Prep Biochem 11:251–268PubMedCrossRefGoogle Scholar
  54. Vishnu-Mittre (1967) Nuclei and chromosomes in a fossil fern. In: Darlington CD, Lewis KR (eds) Chromosomes Today. New York, Plenum pp. 250–251Google Scholar
  55. Wolfe KH, Li W, Sharp P (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058PubMedCrossRefGoogle Scholar
  56. Wu C, Li W (1985) Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci USA 82:1741–1745PubMedCrossRefGoogle Scholar
  57. Yang H (1993) Miocene lake basin analysis and comparative taphonomy: Clarkia (Idaho, USA) and Shanwang (Shandong, PR China). Ph. D. thesis, University of IdahoGoogle Scholar
  58. Zuckerkandl E, Pauling L (1985) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel H (eds) Evolving Genes and Proteins. New York: Academic PressGoogle Scholar
  59. Zurawski G, Clegg MT, Brown AHD (1984) The nature of nucleotide sequence divergence between barley and maize chloroplast DNA. Genetics 106:735–749PubMedGoogle Scholar
  60. Zurawski G, Clegg MT (1987) Evolution of higher plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. Annu Rev Plant Physiol 38:391–418CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1994

Authors and Affiliations

  • Edward M. Golenberg

There are no affiliations available

Personalised recommendations