Skip to main content

DNA and RNA from Ancient Plant Seeds

  • Chapter
Ancient DNA

Abstract

Plant seeds are peculiar structures designed to protect the genetic material of their embryo until long after the death of the mother plant. For this reason, the cells of a plant seed are adapted to survive the most stringent environmental conditions. After prolonged storage, however, a seed loses its capacity to germinate (viability). If the seed is kept in a dry environment it undergoes a sort of spontaneous mummification with no appreciable change in its external morphology. With the passing of centuries it will acquire a dark reddish-brown color, yet show an amazing degree of structure conservation (for a review, see Toole 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amici A, Rollo F (1992) PCR-SSCP characterization of Mu element components in a Huari (X Century) maize sample. Ancient DNA Newsletter 1: in press

    Google Scholar 

  • Chargaff E (1950) Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia 6:201–240

    Article  PubMed  Google Scholar 

  • Cheah KSE, Osborne DJ (1978) DNA lesions occur with loss of viability in embryos of ageing rye seeds. Nature 217:593–599

    Article  Google Scholar 

  • Chen EJ, Seeburg PH (1985) Supercoil sequencing: a fast simple method for sequencing plasmid DNA. DNA 4:165–170

    Article  PubMed  CAS  Google Scholar 

  • Doebley J, Goodman MM, Stuber CW (1984) Isozyme variation in Zea (gramineae). Syst Bot 9:203–218

    Article  Google Scholar 

  • Doebley J, Renfroe W, Blanton A (1987) Restriction site variation in the Zea chloroplast genome. Genetics 117:139–147

    PubMed  CAS  Google Scholar 

  • Hayashi K (1991) PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods and Applications 1:34–38

    PubMed  CAS  Google Scholar 

  • Higuchi RG, Wrischnik LA, Oakes E, George M, Tong B, Wilson AC (1987) Mitochondrial DNA of the extinct quagga: relatedness and extent of postmortem change. J Mol Evol 25:283–287

    Article  PubMed  CAS  Google Scholar 

  • Meyer FG (1980) Carbonized food plants of Pompeii, Herculaneum, and the Villa at Torre Annunziata. Econ Bot 34:401–437

    Article  Google Scholar 

  • Ogram A, Sayeler GS, Barkay T (1988) DNA extraction and purification from sediments. J Microbiol Methods 7:57–66

    Article  Google Scholar 

  • Pääbo S (1985) Preservation of DNA in ancient Egyptian mummies. J Archaeol Sci 12:411–417

    Article  Google Scholar 

  • Pääbo S (1989) Ancient DNA: extraction, characterization, molecular cloning and enzymatic amplification. Proc Nat Acad Sci USA 86:6196–6200

    Article  PubMed  Google Scholar 

  • Pääbo S, Higuchi RG, Wilson AC (1989) Ancient DNA and the polymerase chain reaction. J Biol Chem 264:9709–9712

    PubMed  Google Scholar 

  • Palmer JD, Herbon LJ (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol 28:87–97

    Article  PubMed  CAS  Google Scholar 

  • Rivin CJ, Cullis CA, Walbot V (1986) Evaluating quantitative variation in the genome of Zea mays. Genetics 113:1009–1019

    PubMed  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76

    Article  CAS  Google Scholar 

  • Rollo F (1985) Characterization by molecular hybridization of RNA fragments isolated from ancient (1400 B.C.) seeds. Theor Appl Genet 41:330–333

    Google Scholar 

  • Rollo F (1989) Comparison of maize and teosinte DNA analysing actual and computer-simulated gel electrophoresis patterns of enzymatically amplified DNA. J Genet Breeding 43:179–184

    Google Scholar 

  • Rollo F, La Marca A, Amici A (1987) Nucleic acids in mummified plant seeds: screening of twelve specimens by gel-electrophoresis, molecular hybridization and DNA cloning. Theor Appl Genet 73:501–505

    Article  CAS  Google Scholar 

  • Rollo F, Amici A, Salvi R, Garbuglia AR (1988) Small but faithful pieces of ancient DNA. Nature 335:774

    Article  PubMed  CAS  Google Scholar 

  • Rollo F, Amici A, Salvi R, Garbuglia AR (1989) Characterization of a mitochondrial and nuclear maize DNA sequence by polymerase chain reaction: potential for use as molecular probes. J Genet Breeding 43:91–98

    Google Scholar 

  • Rollo F, Venanzi FM, Amici A (1991) Nucleic acids in mummified plant seeds: biochemistry and molecular genetics of pre-Columbian maize. Genet Res 58:193–201

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual 2nd ed. Cold Spring Harbor, N.Y.: CSHL Press

    Google Scholar 

  • Schwarz-Sommer Z, Gierl A, Cuypers H, Peterson PA, Saendler H (1985) Plant transposable elements generate the DNA sequence diversity needed in evolution. EMBO J 3:591–597

    Google Scholar 

  • Shewry PR, Kirkman MA, Burgess SR, Festenstein GN, Miflin BJ (1982) A comparison of the protein and amino acid composition of old and recent barley grain. New Phytol 90:455–466

    Article  CAS  Google Scholar 

  • Stollar BD (1986) Antibodies to DNA. In: CRC Critical Reviews in Biochemistry 20. Boca Raton, Fla.: CRC Press, pp. 1–36

    Google Scholar 

  • Talbert LE, Chandler VL (1988) Characterization of a highly conserved sequence related to Mutator elements in maize. Mol Biol Evol 5:519–529

    PubMed  CAS  Google Scholar 

  • Talbert LE, Patterson GI, Chandler VL (1989) Mu transposable elements are structurally diverse and distributed throughout the genus Zea. J Mol Evol 29:28–39

    Article  PubMed  CAS  Google Scholar 

  • Toole VK (1986) Ancient seeds: seed longevity. J Seed Technol 10:1–23

    Google Scholar 

  • Venanzi FM, Rollo F (1990) Mummy RNA lasts longer. Nature 343:25–26

    Article  PubMed  CAS  Google Scholar 

  • Zohary D, Hopf M (eds) (1988) Domestication of Plants in the Old World Oxford: Oxford University Press

    Google Scholar 

  • Zurawski G, Clegg MT, Brown HD (1984) The nature of nucleotide sequence divergence between barley and maize chloroplast DNA. Genetics 106:735–749

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Rollo, F., Venanzi, F.M., Amici, A. (1994). DNA and RNA from Ancient Plant Seeds. In: Herrmann, B., Hummel, S. (eds) Ancient DNA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4318-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4318-2_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94308-4

  • Online ISBN: 978-1-4612-4318-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics