Skip to main content

Discrete Mechanics

  • Chapter
Granular Matter

Abstract

The partial differential equation (PDE) is often the tool of choice for describing the behavior of complicated fluid or solid mechanical systems. Sometimes, however, mechanical systems are composed of physically distinct elements that are not so large in number that a continuum description of the entire system is feasible or possible, or, although large in number, cannot be linked to macroscopic behavior through presently known constitutive laws. If interaction forces between individual elements are known or can be estimated and modeled, then the behavior of these elements or “particles” can be studied by solving the Newtonian equations of motion for each particle in the group simultaneously. This method (Cundall and Strack, 1979; Walton, 1983), variously called the distinct element method (DEM) or the particle dynamics method (PDM), is one example of several approaches that seek to follow the motion of selected “elementary” mechanical entities composing a larger system, and constitutes one approach to what we call here “discrete mechanics.” The purpose of this chapter is not to review the field of discrete mechanics, but to address in an eclectic way issues and problems arising in the implementation and application of these methods. For reviews see the articles by Campbell (1990) and by Cundall and Hart (1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Clarendon Press, Oxford, 1987, p. 385.

    MATH  Google Scholar 

  • Anderson, R.S. and Haff, P.K. Simulation of eolian saltation, Science, 241, 820–823, 1988.

    Article  ADS  Google Scholar 

  • Barbosa, R. and Ghaboussi, J., Discrete finite element method, in Proc. 1st U.S. Conf. on Discrete Element Methods, Mustoe, G.G.W., Henriksen, M., and Huttelmaier, H.-P., Eds., CSM Press, Golden, Colorado, 1989.

    Google Scholar 

  • Baxter, G.W. and Behringer, R.P., Cellular automata models of granular flow, Phys. Rev. A, 42, 1017–1020, 1990.

    Article  ADS  Google Scholar 

  • Baxter, G.W. and R.P. Behringer, Cellular automata models for the flow of granular materials, Physica D, 51, 465–471, 1991.

    Article  ADS  MATH  Google Scholar 

  • Campbell, C.S., Rapid granular flows, Annu. Rev. Fluid Mech., 22, 57–92, 1990.

    Article  ADS  Google Scholar 

  • Campbell, C.S. and Brennen, C.E., Computer simulation of granular shear flows, J. Fluid Mech., 151, 167–188, 1985.

    Article  ADS  Google Scholar 

  • Campbell, C.S. and Gong, A., The stress-tensor in a two-dimensional granular flow, J. Fluid Mech., 164, 107–125, 1986.

    Article  ADS  MATH  Google Scholar 

  • Cundall, P.A. and Hart, R.D., Numerical modeling of discontinua, in Proc. 1st U.S. Conf. on Discrete Element Methods, Mustoe, G.G.W., Henriksen, M., and Huttelmaier, H.-P., Eds., CSM Press, Golden, Colorado, 1989.

    Google Scholar 

  • Cundall, P.A. and Strack, O.D.L., A discrete numerical model for granular assemblies, Geotechnique, 29, 47–65, 1979.

    Article  Google Scholar 

  • Forrest, S.B. and Haff, P.K., Mechanics of wind ripple stratigraphy, Science, 255, 1240–1243, 1992.

    Article  ADS  Google Scholar 

  • Frisch, U., Hasslacher, B., and Pomeau, Y., Lattice-gas automata for the Navier-Stokes equation, Phys. Rev. Lett., 56, 1505–1508, 1986.

    Article  ADS  Google Scholar 

  • Goddard, J.D., Nonlinear elasticity and pressure dependent wave speeds in granular media, Proc. R. Soc. Lond. A, 430, 105–131, 1990.

    Article  ADS  MATH  Google Scholar 

  • Goldsmith, W., Impact: The Theory and Physical Behavior of Colliding Solids, Edward Arnold, London, 1960, p. 379.

    Google Scholar 

  • Gutt, G.M., The Physics of Granular Systems, Ph.D. thesis, California Institute of Technology, Pasadena, California, 1989, p. 185.

    Google Scholar 

  • Gutt, G.M. and Haff, P.K., An automata model of granular materials, in Proc. 5th Distributed Memory Computing Conference, Vol. 1, IEEE Computer Society Press, Los Alamitos, California, 1990, pp. 522–529.

    Chapter  Google Scholar 

  • Haff, P.K., Grain flow as a fluid mechanical phenomena, J. Fluid Mech., 134, 401–430, 1983.

    Article  ADS  MATH  Google Scholar 

  • Haff, P.K., A physical picture of kinetic granular fluids, J. Rheol., 30, 931–948, 1986.

    Article  ADS  Google Scholar 

  • Haff, P.K. and Anderson R.S., Grain-scale simulations of loose sedimentary beds: the example of grain-bed impacts in aeolian saltation, Sedimentology, 1993, in press.

    Google Scholar 

  • Haff, P.K. and Werner, B.T., Collisional interaction of a small number of confined inelastic grains, in Colloidal and Interfacial Phenomena, Vol. 3., Particulate and Multiphase Processes, Ariman, T. and Veziroglu, T.N., Eds., Hemisphere, Washington, D.C., 1987, pp. 483–501.

    Google Scholar 

  • Hakuno, M., Tarumi, Y., and Meguro, K., A DEM simulation of concrete fracture, fault rupture and sand liquefaction, in Proc. 1st U.S. Conf. on Discrete Element Methods, Mustoe, G.G.W., Henriksen, M., and Huttelmaier, H.-P., Eds., CSM Press, Golden, Colorado, 1989.

    Google Scholar 

  • Hanes, D.M. and Inman, D.L., Observations of rapidly flowing granular-fluid materials, J. Fluid Mech., 150, 357–380, 1985.

    Article  ADS  Google Scholar 

  • Hopkins, M.A. and Louge, M.Y., Inelastic microstructure in rapid granular flows of smooth disks, Phys. Fluids A, 3, 47–57, 1990.

    Article  ADS  Google Scholar 

  • Hopkins, M.A. and Shen, H., Constitutive relations for a planar, simple shear flow of rough disks, Int. J. Eng. Sci., 24, 1717–1730, 1986.

    Article  MATH  Google Scholar 

  • Hui, K. and Haff, P.K., Kinetic grain flow in a vertical channel, Int. J. Multiphase Flow, 12, 289–298, 1986.

    Article  MATH  Google Scholar 

  • Hui, K., Haff, P.K., Ungar, J.E., and Jackson, R., Boundary conditions for high-shear grain flows, J. Fluid Mech., 145, 223–233, 1984.

    Article  ADS  MATH  Google Scholar 

  • Jenkins, J.T. and Savage, S.B., A theory for the rapid flow of identical, smooth, nearly elastic particles, J. Fluid Mech., 130, 187–202, 1983.

    Article  ADS  MATH  Google Scholar 

  • Jiang, Z. and Haff, P.K., Multiparticle simulation methods applied to the micro-mechanics of bed load transport, Water Resources Res., 29, 399–412, 1993.

    Article  ADS  Google Scholar 

  • Johnson, K.L., Contact Mechanics, Cambridge University Press, Cambridge, 1985, p. 452.

    MATH  Google Scholar 

  • Johnson, P.C. and Jackson, R., Frictional-collisional constitutive relations for granular materials, with application to plane shearing, J. Fluid Mech., 176, 67–93, 1987.

    Article  ADS  Google Scholar 

  • Johnson, P.C., Nott, P., and Jackson, R., Frictional-collisional equations of motion for particulate flows and their application to chutes, J. Fluid Mech., 210, 501–535, 1990.

    Article  ADS  Google Scholar 

  • Liepmann, H.W. and Roshko, A., Elements of Gasdynamics, John Wiley & Sons, New York, 1957, p. 439.

    MATH  Google Scholar 

  • Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, 4th ed., Dover, New York, 1944, p. 643.

    MATH  Google Scholar 

  • Lun, C.K.K., Savage, S.B., Jeffrey, D.J., and Chepurniy, N., Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field, J. Fluid Mech., 140, 223–256, 1984.

    Article  ADS  MATH  Google Scholar 

  • Margolis, N., Tommaso, T. and Vichniac, G., Cellular-automata supercomputers for fluid-dynamics modeling. Phys. Rev. Lett., 56, 1694–1696, 1986.

    Article  ADS  Google Scholar 

  • Richman, M.W. and Chou, C.S., Boundary effects on granular shear flows of smooth disks, Z. angew. Math. Phys. (J. Appl. Phys. Math.), 39, 885–901, 1988.

    Article  MATH  Google Scholar 

  • Rosato, A.D., Vreeland, T., Jr., and Prinz, F.B., Manufacture of powder compacts, Int. Materials Rev., 36, 45–61, 1991.

    Google Scholar 

  • Savage, S.B., The mechanics of rapid granular flows, Adv. Appl. Mech., 24, 289–366, 1984.

    Article  MATH  Google Scholar 

  • Ungar, J.E. and Haff, P.K., Stready-state saltation in air, Sedimentology, 34, 289–299, 1987.

    Article  ADS  Google Scholar 

  • Walton, O.R., Particle-dynamics calculations of shear flows, in Mechanics of Granular Materials: New Models and Constitutive Relations, Jenkins, J.T. and Satake, M., Eds., Elsevier, Amsterdam, 1983, pp. 327–338.

    Google Scholar 

  • Walton, O.R. and Braun, R.L., Stress calculations for assemblies of inelastic spheres in uniform shear, Acta Mech., 63, 73–86, 1986a.

    Article  Google Scholar 

  • Walton, O.R. and Braun, R.L., Viscosity, granular temperature and stress calculations for shearing assemblies of inelastic, frictional disks, J. Rheol., 30, 949–980, 1986b.

    Article  ADS  Google Scholar 

  • Walton, O.R., Kim, H., and Rosato, A.D., Microstructure and stress differences in shearing flows, in Mechanics Computing in 1990s and Beyond. Proc. Engineering Mechanics Div., ASCE, Columbus, Ohio, May 20–22, 1991, pp. 1249–1253.

    Google Scholar 

  • Williams, J.R. and Pentland, A.P., Superquadrics and modal dynamics for discrete elements in concurrent design, in Proc. 1st U.S. Conf. on Discrete Element Methods, Mustoe, G.G.W., Henriksen, M., and Huttelmaier, H.-P., Eds., CSM Press, Golden, Colorado, 1989.

    Google Scholar 

  • Williams, J., Chen, A., and Petrie, D., Ice island interaction with conical production structures, in Proc. 1st U.S. Conf. on Discrete Element Methods, Mustoe, G.G.W., Henriksen, M., and Huttelmaier, H.-P., Eds., CSM Press, Golden, Colorado, 1989.

    Google Scholar 

  • Worgan, K.J. and Mustoe, G.G.W., Application of the discrete element method to modelling the subsurface penetration of a uniform ice cover, in Proc. 1st U.S. Conf. on Discrete Element Methods, Mustoe, G.G.W., Henriksen, M., and Huttelmaier, H.-P., Eds., CSM Press, Golden, Colorado, 1989.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Haff, P.K. (1994). Discrete Mechanics. In: Mehta, A. (eds) Granular Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4290-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4290-1_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8725-4

  • Online ISBN: 978-1-4612-4290-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics