Skip to main content

Pattern Formation and Complexity in Granular Flows

  • Chapter

Abstract

Granular flows present a host of interesting problems, both theoretical and experimental. For slow deformations, granular materials are glassy. They contain frozen disorder, and stresses propagate through the material via complex chains of contacts (Drescher et al., 1972; Drescher, 1976; Travers et al., 1986). In this case, granular materials are thought to behave plastically in response to a stress, once some narrow range of elastic response has been exceeded (Jackson, 1983). As the material deforms, contact chains are irreversibly broken and remade. At faster flow rates and lower densities, these materials are better modeled as a gas of particles, exhibiting random fluctuations (Bagnold, 1954; Haff, 1983; Jenkins and Savage, 1983). Unlike the case for large thermodynamic systems, the fluctuation energies can be comparable to the energy associated with large-scale motion. In both scenarios, the flows are inherently dissipative. For slow flows, energy is lost to Coulomb friction as grains slide across each other. For rapid flows, energy is lost because particle collisions are inherently inelastic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagnold, R.A., Experiments on a gravity-free dispersion of a large solid spheres in a newtonian fluid under shear, Proc. R. Soc. London, A225, 49–63, 1954.

    ADS  Google Scholar 

  • Bak, P., Tang, C., and Wiesenfeld, K., Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Lett., 59, 381–384, 1987.

    Article  ADS  MathSciNet  Google Scholar 

  • Baxter, G.W. and Behringer, R.P., Pattern formation in flowing sand, Phys. Rev. Lett., 62, 2825–2828, 1989.

    Article  ADS  Google Scholar 

  • Baxter, G.W. and Behringer, R.P., Cellular automata models of granular flow, Phys. Rev. A, 42, 1017–1020, 1990a.

    Article  ADS  Google Scholar 

  • Baxter, G.W. and Behringer, R.P., Pattern formation and time-dependence in flowing sand, in Two Phase Flows and Waves, Springer-Verlag, New York, 1990b, pp. 1–29.

    Google Scholar 

  • Baxter, G.W. and Behringer, R.P., Cellular automata models for the flow of granular materials, Physica D, 51, 465–471, 1991a.

    Article  ADS  MATH  Google Scholar 

  • Baxter, G.W. and Behringer, R.P., Time-dependence, scaling and pattern formation for flowing sand, Eur. J. Mech. B, 10, 181–186, 1991b.

    Google Scholar 

  • Baxter, G.W. and Behringer, R.P., Experimental test of time-scales in flowing sand, Europhys. Lett., 21, 569–574, 1993.

    Article  ADS  Google Scholar 

  • Bransby, P.L. and Blair-Fish, P.M., Initial deformations during mass flow from a bunker: observations and idealizations, Powder Technol., 11, 273–288, 1975.

    Article  Google Scholar 

  • Bransby, P.L., Blair-Fish, P.M., and James, R.G., An investigation of the flow of granular materials, Powder Technol., 8, 197–206, 1973.

    Article  Google Scholar 

  • Cambou, B., Geomaterials: Constitutive Equations and Modelling, Elsevier, New York, 1990, pp. 263–282.

    Google Scholar 

  • Campbell, C.S., The stress tensor for simple shear flows of a granular material, J. Fluid Mech., 203, 449–473, 1989.

    Article  ADS  Google Scholar 

  • Campbell, C.S. and Brennen, C.E., Computer simulation of granular shear flows, J. Fluid Mech., 151, 167–188, 1985.

    Article  ADS  Google Scholar 

  • Campbell, C.S. and Gong, A., The stress tensor in a two-dimensional granular shear flow, J. Fluid Mech., 164, 107–125, 1986.

    Article  ADS  MATH  Google Scholar 

  • Chang, C. and Misra, A., Constitutive laws for engineering materials, in Stress-Strain Modelling of Heterogeneous Solids Based on Micromechanics, American Society of Mechanical Engineers Press, 1991, pp. 501–504.

    Google Scholar 

  • Cristofferson, J., Mehrabadi, M.M., and Nehmat-Nasser, S., A micromechanical description of granular material behavior. J. Appl. Mech., 48, 339–344, 1981.

    Article  ADS  Google Scholar 

  • Cundall, P. A. and Strack, O.D.L., A discrete numerical model for granular assemblies, Geotechnique, 29, 47–65, 1979.

    Article  Google Scholar 

  • Cutress, J.O. and Pulfer, R.F., X-Ray investigations of flowing powders. Powder Technol., 1, 213–220, 1967.

    Article  Google Scholar 

  • de Gennes, P.G., The Physics of Liquid Crystals, Clarendon Press, Oxford, 1974.

    Google Scholar 

  • Drescher, A., An experimental investigation of flow rules for granular materials using optically sensitive glass particles, Geotechnique, 26, 591–601, 1976.

    Article  Google Scholar 

  • Drescher, A. and De Josselin De Jong, G., Photoelastic verification of a mechanical model for the flow of a granular material, J. Mech. Phys. Solids, 20, 337–351, 1972.

    Article  ADS  Google Scholar 

  • Drescher, A., Cousens, T.W., and Bransby, P.L., Kinematics of the mass flow of granular material through a plane hopper, Geotechnique, 28, 27–42, 1978.

    Article  Google Scholar 

  • Haff, P.K. and Werner, B.T., Computer simulation of the mechanical sorting of grains, Powder Technol., 48, 239–245, 1986.

    Article  Google Scholar 

  • Evesque, P. and Rajchenbach, J., Instability in a sand heap, Phys. Rev. Lett., 62, 44–46, 1989.

    Article  ADS  Google Scholar 

  • Feder, J., Fractals, Plenum, New York, 1988.

    MATH  Google Scholar 

  • Frisch, U., Hasslacher, B., and Pomeau, Y., Lattice gas automata for the Navier-Stokes equation, Phys. Rev. Lett., 56, 1505–1508, 1986.

    Article  ADS  Google Scholar 

  • Haff, P.K., Booming dunes, Amer. Sci., 74, 376–381, 1986.

    ADS  Google Scholar 

  • Haff, P.K., Grain flow as a fluid-mechanical phenomenon, J. Fluid Mech., 134, 401–430, 1983.

    Article  ADS  MATH  Google Scholar 

  • Held, G., Solina, D.H., Keane, D.T, Haag, W.J., Horne, P.M., and Grinstein, G. Experimental study of critical-mass fluctuation in an evolving sandpile, Phys. Rev. Lett., 65, 1120–1123, 1990.

    Article  ADS  Google Scholar 

  • Hettler, A. and Vardoulakis, I., Behavior of dry sand tested in a large triaxial apparatus, Geotechnique, 34, 183–197, 1984.

    Article  Google Scholar 

  • Jackson, R., in Some mathematical and physical aspects of continuum models for the motion of granular materials, in The Theory of Dispersed Multiphase Flow, Academic Press, New York, 1983, pp. 291–337.

    Google Scholar 

  • Jaeger, H.M., Liu, C. and Nagel, S.R., Relaxation at the angle of repose, Phys. Rev. Lett., 62, 40–43, 1989.

    Article  ADS  Google Scholar 

  • Jenike, A.W., Gravity flow of bulk solids, Bull. Univ. Utah Eng. Exp. Station, 1961.

    Google Scholar 

  • Jenike, A.W., Storage and flow of solids, Bull. Univ. Utah Eng. Exp. Station, 1964 (seventh printing, 1976 ).

    Google Scholar 

  • Jenkins, J.T. and Savage, S.B., A theory for the rapid flow of identical, smooth, nearly elastic spherical particles, J. Fluid Mech., 130, 186–202, 1983.

    Article  ADS  Google Scholar 

  • Kadanoff, L.P., Nagel, S.R., Wu, L., and Zhou, S.M., Scaling and universality in avalanches, Phys. Rev. A, 39, 6524–6537, 1989.

    Article  ADS  Google Scholar 

  • Kruger, R.A. and Riederer, S.J., Basic Concepts of Digital Subtraction Angiography, G.K. Hall Medical Publishers, Boston, 1984.

    Google Scholar 

  • Mandelbrot, B.B. and Van Ness, J.W., Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10, 422–437, 1968.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Mandelbrot, B.B. and Wallis, J.R., Noah, Joseph, and operational hydrology, Water Resour. Res., 4, 909–918, 1968.

    Article  ADS  Google Scholar 

  • Matsuoaka, H., A microscopic study on shear mechanism of granular materials, Soils Found, 14, 29–43, 1974.

    Article  Google Scholar 

  • Mello, T.M., Diamond, P.H., and Levine, H., Hydrodynamic modes of a granular shear flow, Phys. Fluids A, 3, 2067–2075, 1991.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Michalowski, R.L., Flow of granular material through a plane hopper, Powder Technol., 39, 29–40, 1984.

    Article  Google Scholar 

  • Oda, M., Initial fabrics and their relations to mechanical properties of granular material, Soils Found., 12, 17–36, 1972.

    Google Scholar 

  • Otnes, R.K. and Enochson, L., Digital Time Series Analysis, John Wiley & Sons, New York, 1972.

    MATH  Google Scholar 

  • Pariseau, W.G., Discontinuous velocity fields in gravity flows of granular materials through slots, Powder Technol., 3, 218–226, 1969.

    Article  Google Scholar 

  • Pitman, E.B. and Schaeffer, D.G., Stability of time dependent compressible granular flow in two dimensions, Commun. Pure Appl. Math., 40, 421–447, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes in C, Cambridge University Press, Cambridge, 1988.

    MATH  Google Scholar 

  • Rosato, A., Strandburg, K.J., Prinz, F., and Swendsen, R.H., Why the brazil nuts are on top: size segregation of particulate matter by shaking, Phys. Rev. Lett., 58, 1038–1040, 1987.

    Article  ADS  MathSciNet  Google Scholar 

  • Savage, S., Simulation of Couette flow of granular materials: spatiotemporal coherence and 1/f noise, 1993, to be published.

    Google Scholar 

  • Schaeffer, D.G., Instability in the evolution equations describing incompressible granular flow, J. Diff. Eq., 66, 19–50, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  • Schofield, A. and Wroth, C, Critical State Soil Mechanics, McGraw-Hill, New York, 1968.

    Google Scholar 

  • Thompson, P.A. and Grest, G.S., Friction and the dilatancy transition, Phys. Rev. Lett., 67, 1751–1754, 1991.

    Article  ADS  Google Scholar 

  • Travers, T., Bideau, D., Gervois, A., Troadec, J.P., and Messager, J.C., Uniaxial compression effects on 2d mixtures of “hard” and “soft” cylinders. J. Phys. A., 19, L1033–L1038, 1986.

    Article  ADS  Google Scholar 

  • Tuzun, U. and Nedderman, R.M., An investigation of the flow boundary during steady-state discharge from a funnel-flow bunker. Powder Technol., 31, 27–43, 1982.

    Article  Google Scholar 

  • Voss, R.F., Random fractals: self-affinity in noise, music, mountains and clouds, Physica D, 38, 362–371, 1988.

    Article  ADS  MathSciNet  Google Scholar 

  • Walton, O.R. and Braun, R.L., Viscosity and temperature calculations for assemblies of inelastic frictions disks, J. Rheol., 30, 949–980, 1986a.

    Article  ADS  Google Scholar 

  • Walton, O.R. and Braun, R.L., Stress calculations for assemblies of inelastic spheres in uniform shear. Acta Mech., 63, 73–86, 1986b.

    Article  Google Scholar 

  • Walton, O.R., Braun, R.L., and Cervelli, D.M., Flow of granular solids: 3-dimensional discrete-particle computer modelling of uniform shear, in Micromechanics of Granular Materials, Elsevier, New York, 1987.

    Google Scholar 

  • Wolfram, S., Cellular automata fluids. 1. Basic theory, J. Stat. Phys., 45, 471–472, 1986.

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Behringer, R.P., Baxter, G.W. (1994). Pattern Formation and Complexity in Granular Flows. In: Mehta, A. (eds) Granular Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4290-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4290-1_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8725-4

  • Online ISBN: 978-1-4612-4290-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics