Skip to main content

Undiscounted Zero Sum Differential Games with Stopping Times

  • Conference paper

Part of the book series: Annals of the International Society of Dynamic Games ((AISDG,volume 3))

Abstract

We propose a discretization scheme for an undiscounted zero sum differential game with stopping times. The value function of the original problem satisfies an integral inequality of Isaacs type that we can discretize using finite difference or finite element techniques.

The fully discrete problem defines a stochastic game problem associated with the process, which may have, in general, multiple solutions. Among these solutions there exists one which is naturally associated with the value function of the original problem.

The main contribution of this paper is the complete characterization of the set of solutions and the description of a procedure to identify the desired solution. We also present accelerated algorithms in order to efficiently compute the discrete solution.

This work was partially done during a visit of the author at INRIA - Sophia Antipolis, France

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardi M., Soravia P., “Approximation of differential games of pursuit- evasion by discrete-time games”, Developments in modeling and computation, R.P. Hamalainen, H.K. Ethamo eds. Lectures Notes in Control and Information Sciences 156 (1991), Springer-Verlag, 131–143.

    Google Scholar 

  2. Bardi M., Soravia P., “Hamilton-Jacobi equations with singular boundary conditions on a free boundary and applications to differential games”, Trans. Amer. Math. Soc. 325 (1991), 205–229.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bardi M., Falcone M., Soravia P., “Fully discrete schemes for the value function of pursuit-evasions games”, Proceedings of Fifth International Symposium on Dynamic Games and Applications, Grimentz, Switzerland, 15–18 July 1992.

    Google Scholar 

  4. Bardi M., Falcone M., “Discrete approximations of the minimal time function for systems with regular optimal trajectories”, Ricerca di Atenes. Ottimizzatione de Funcionali e Convergence Variazionali, 1990.

    Google Scholar 

  5. Bardi M., Falcone M., “An approximation schemes for the minimum time function”. Siam J. Control and Optimization. Vol 4 (1990), 950–965.

    Article  MathSciNet  Google Scholar 

  6. Barles G., Perthame B., “Exit time problems in optimal control and vanishing viscosity method”, Siam J. Control and Optimization, Vol 26: 5 (1988), 1133, 1148.

    MathSciNet  Google Scholar 

  7. Capuzzo Dolcetta I., Ishii H., “Approximate solution of the Bellman equation of deterministic control theory”, Appl. Math. Optim., Vol. 11 (1984), 161–181.

    Article  MathSciNet  Google Scholar 

  8. Crandall M. G., Lions P. L., “Viscosity solutions of Hamilton-Jacobi equations”, Tansactions of the American Mathematical Society, Vol 277: 1 (1983), 1–42.

    Article  MathSciNet  MATH  Google Scholar 

  9. Di Marco S., “Tecnicas de descomposicion-agregacion en el tratamiento de la inecuacion bilatera de Isaacs”, Mecanica Computacional Vol 12 (1991), 509–518.

    Google Scholar 

  10. Friedman A., “Differential Games”, Wiley-Interscience, New York, 1971.

    MATH  Google Scholar 

  11. Gonzalez R., “Sur la resolution de l’equation de Hamilton-Jacobi du controle deterministique”, Cahiers de Mathematiques de la Decision N 8029 and 8029 bis. Ceremade-Universite de Paris-Dauphine, 1980.

    Google Scholar 

  12. Gonzalez R., “Solucion numerica de problemas de juegos diferenciales de suma nula con tiempo de detention”, Proceedings of 1er Congreso Nacional de Informatica y Teleinformàtica -USUARIA’83/13 JAIIO, Buenos Aires, 1983 4. 1–4. 17.

    Google Scholar 

  13. Gonzalez R., Rofman E., “On deterministic control problems: an approximation procedure for the optimal cost. Part I and II”, SIAM Journal on Control and Optimization, 23 (1985), 242–285.

    Article  MathSciNet  MATH  Google Scholar 

  14. Gonzalez R., Tidball M., “On a Discrete Time Approximation of the Hamilton-Jacobi Equation of Dynamic Programming”, Rapport de Recherche N1375, INRIA, 1990.

    Google Scholar 

  15. Gonzalez R., Tidball M., “On the rate of convergence of fully discrete solutions of Hamilton-Jacobi equations”, Rapport de Recherche, N 1376, INRIA, 1991.

    Google Scholar 

  16. Gonzalez R., Tidball M., “Sur l’odre de convergence des solutions discretisees en temps et en espace de l’equation de Hamilton-Jacobi” Comptes Rendus Acd. Sci., Paris, Tomo 314, Serie I, 1992, 479–482.

    Google Scholar 

  17. Gonzalez R. L. V., Tidball M. M., “Fast solution of general nonlinear fixed point problems”. System Modeling and Optimization, Proceedings of the 15th IFIP Conference on System Modeling and Optimization, Zurich, Switzerland, September 2–6, 1991, Lecture Notes in Control and Information Sciences, Vol.180 (1992), Springer Verlag, New York, 35–44.

    Google Scholar 

  18. Ross S. M., “Applied Probability Models with Optimization Applications”, Holden-Day, San Francisco, 1970.

    MATH  Google Scholar 

  19. Soner M., “Optimal control with state-space constraints, II”. SIAM J. of Control and Optim., 26 (1986), 1110–1122.

    Article  MathSciNet  Google Scholar 

  20. Stettner L., “Zero-sum Markov Games with Stopping and Impulsive Strategies”, Appl. Math. Optim., Vol. 9 (1982), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  21. Strang G., Fix G., “An Analysis of the Finite Element Method”, Prentice-Hall, Englewood Cliffs, NJ, 1973.

    MATH  Google Scholar 

  22. Tidball M.M, Gonzalez R.L.V., “Zero sum differential games with stopping times. Some results about its numerical solution”, Proceedings of Fifth International Symposium on Dynamic Games and Applications, Grimentz, Switzerland, 15-18 July 1992. Annals of Dynamics Games, Vol 1, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Boston

About this paper

Cite this paper

Tidball, M.M. (1995). Undiscounted Zero Sum Differential Games with Stopping Times. In: Olsder, G.J. (eds) New Trends in Dynamic Games and Applications. Annals of the International Society of Dynamic Games, vol 3. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4274-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4274-1_15

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8719-3

  • Online ISBN: 978-1-4612-4274-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics