Skip to main content

The Nuclear Hormone Receptor Superfamily: Structure and Function

  • Chapter
Hormones and Cancer

Part of the book series: Hormones in Health and Disease ((HHD))

Abstract

Members of the nuclear receptor superfamily are ligand-dependent transcription factors that regulate the expression of target genes via binding to specific cis-acting elements (Evans, 1988; Green and Chambon, 1988; Beato, 1989; O’Malley, 1990; Parker, 1990; Wahli and Martinez, 1991; Tsai and O’Malley, 1994). Members of this superfamily respond to endocrine, paracrine, and possibly autocrine signals and therefore modulate diverse aspects of development, differentiation, homeostasis, and behavior in vertebrates. The superfamily consists of receptors for steroid hormones (e.g., estrogens, progestins, androgens, and corticosteroids), steroid derivatives (dihydroxyl vitamin D3), and nonsteroids (retinoids and thyroid hormone). It also includes a growing number of structurally related proteins for which their ligands have yet to be identified, referred to as “orphan receptors,” or members that have lost ligand binding function (e.g., thyroid hormone receptor al and α3; TRα2 and TRα3). In addition, a group of proteins that regulate a variety of developmental pathways in invertebrates, mostly Drosophila melanogaster, also has been classified as members of this superfamily (Table 1) (Amero et al., 1992; Laudet et al., 1992; Parker, 1993; Lutz et al., 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali S, Metzger D, Bornert JM, Chambon P (1993): Modulation of transcriptional activation by ligand-dependent phosphorylation of the human oestrogen receptor A/B region. EMBO J 12: 1153–1160

    PubMed  CAS  Google Scholar 

  • Allan GF, Ing NH, Tsai SY, Srinivasan G, Weigel NL, Thompson EB, Tsai M-J, O’Malley BW (1991): Synergism between steroid response and promoter elements during cell-free transcription. J Biol Chem 266: 5905–5910

    PubMed  CAS  Google Scholar 

  • Allan GF, Leng X, Tsai SY, Weigel NL, Edwards DP, Tsai M-J, O’Malley BW (1992a): Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J Biol Chem 267: 19513–19520

    PubMed  CAS  Google Scholar 

  • Allan GF, Tsai SY, Tsai M-J, O’Malley BW (1992b): Hormonal induced conformational changes in the progesterone receptor are required for events following binding to DNA. Proc Natl Acad Sci USA 89: 11750–11754

    Article  PubMed  CAS  Google Scholar 

  • Allan GF (1994): Mechanism of ligand activation. In: Mechanism of Steroid Hormone Regulation of Gene Transcription, Tsai M-J, O’Malley BW, eds. Austin: R.G. Landes Company

    Google Scholar 

  • Amero SA, Kretsinger RH, Moncrief MD, Yamamoto KR, Pearson WR (1992): The origin of nuclear hormone receptor proteins: A single precursor distinct from other transcription factors. Mol Endocrinol 6: 3–7

    Article  PubMed  CAS  Google Scholar 

  • Aronica SM, Katzenellenbogen BS (1993): Stimulation of estrogen-receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen cyclic adenosine monophosphate and insulin-like growth factor-1. Mol Endocrinol 7: 743–752

    Article  PubMed  CAS  Google Scholar 

  • Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM (1987): Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237: 268–275

    Article  PubMed  CAS  Google Scholar 

  • Au-Fliegner M, Helmer E, Casanova J, Raaka BM, Samuels HH (1993): The conserved ninth C-terminal heptad in thyroid hormone and retinoic acid receptors mediates diverse responses by affecting heterodimer but not homodimer formation. Mol Cell Biol 13: 5725–5735

    PubMed  CAS  Google Scholar 

  • Auricchio F (1989): Phosphorylation of steroid receptors. J Steroid Biochem 32: 613–622

    Article  PubMed  CAS  Google Scholar 

  • Bagchi M (1994): Mechanisms of target gene activation by steroid hormone receptors: Insights from cell-free transcription system. In: Mechanism of Steroid Hormone Regulation of Gene Transcription. Tsai M-J, O’Malley BW, eds. Austin: R.G. Landes Company

    Google Scholar 

  • Bagchi MK, Tsai SY, Tsai M-J, O’Malley BW (1990a): Identification of a functional intermediate in receptor activation in progesterone-dependent cell-free transcription. Nature 345:547–550 Bagchi MK, Tsai SY, Weigel NL, Tsai M-J, O’Malley BW (1990b): Regulation of in vitro transcription by progesterone receptor: characterization and kinetic studies. J Biol Chem 265: 5129–5134

    PubMed  CAS  Google Scholar 

  • Baniahmad A, Steiner C, Kohne AC, Renkawitz R (1990): Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site. Cell 61: 505–514

    Article  PubMed  CAS  Google Scholar 

  • Baniahmad A, Kohne AC, Renkawitz R (1992a): A transferable silencing domain is present in the thyroid hormone receptor in the v-erbA oncogene product and in the retinoic acid receptor. EMBO J 11: 1015–1023

    PubMed  CAS  Google Scholar 

  • Baniahmad A, Tsai SY, O’Malley BW, Tsai M-J (1992b): Kindred S thyroid hormone receptor is an active and constitutive silencer and a repressor for thyroid hormone and retinoic acid responses. Proc Natl Acad Sci USA 89: 10633–10637

    Article  PubMed  CAS  Google Scholar 

  • Baniahmad A, Ha I, Reinberg D, Tsai SY, Tsai M-J, O’Malley BW (1993): Interaction of human thyroid hormone receptor beta with transcription factors TFIIB may mediate target gene derepression and activation by thyroid hormone. Proc Natl Acad Sci USA 90: 8832–8836

    Article  PubMed  CAS  Google Scholar 

  • Baniahmad A, Leng X, Burris TP, Tsai SY, Tsai M-J, O’Malley BW (1995): The r4 activation domain of the thyroid hormone receptor is required to release a correpressor(s) necessary for silencing. Mol Cell Biol 15: 76–86

    PubMed  CAS  Google Scholar 

  • Beato M (1989): Gene regulation by steroid hormones. Cell 56: 335–344

    Article  PubMed  CAS  Google Scholar 

  • Berrodin TJ, Marks MS, Ozato K, Linney E, Lazar MA (1992): Heterodimerization among thyroid hormone receptor retinoic acid receptor retinoid X receptor chick ovalbumin upstream promoter transcription factor and an endogenous liver protein. Mol Endocinol 6: 1468–1478

    Article  CAS  Google Scholar 

  • Bocquel MT, Kuman V, Strieker C, Chambon P, Gronemeyer H (1989): The contribution of the N- and C-terminal regions of steroid receptors to activation of transcription is both receptor and cell specific. Nuc Acids Res 17: 2581–2594

    Article  CAS  Google Scholar 

  • Bogazzi F, Hudson LD, Nikodem VM (1994): A novel heterodimerization partner for thyroid hormone receptor. J Biol Chem 269: 11683–11686

    PubMed  CAS  Google Scholar 

  • Bradley DJ, Towle HC, Young III (1994): Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc Natl Acad Sci USA 91: 439–443

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw MS, Tsai SY, Leng X, Dobson ADW, Conneely OM, O’Malley BW, Tsai M-J (1991): Studies on the mechanism of functional cooperativity between progesterone and estrogen receptors. J Biol Chem 266: 16684–16690

    PubMed  CAS  Google Scholar 

  • Bruggemeier U, Kalff M, Franke S, Scheidereit C, Beato M (1991): Ubiquitous transcription factor OTF-1 mediates induction of the mouse mammary tumor virus promoter through synergistic interaction with hormone receptors. Cell 64: 565–572

    Article  PubMed  CAS  Google Scholar 

  • Bruggemeier U, Rogge L, Winnacker EL, Beato M (1994): Nuclear factor I acts as a transcription factor on the MMTV promoter but competes with steroid hormone receptors for DNA binding. EMBO J 9: 2233–2239

    Google Scholar 

  • Buetti E, Kuhnel B, Diggelmann H (1989): Dual function of a nuclear factor I binding site in MMTV transcription regulation. Nucleic Acids Res 17: 3065–3078

    Article  PubMed  CAS  Google Scholar 

  • Bugge TH, Pohl J, Lonnoy O, Stunnenberg HG (1992): RXR alpha a promiscuous partner of retinoic acid and thyroid hormone receptors. EMBO J 11: 1409–1418

    PubMed  CAS  Google Scholar 

  • Buratowski S (1994): The basics of basal transcription by RNA polymerase II. Cell 77: 1–3

    Article  PubMed  CAS  Google Scholar 

  • Carlberg C, Bendik I, Wyss A, Meier E, Sturzenbecker LJ, Grippo JF, Hunziker W

    Google Scholar 

  • 1993): Two nuclear signalling pathways for vitamin D. Nature 361: 657–660

    Google Scholar 

  • Cato ACB, Miksicek R, Schutz G, Arnemann J, Beato M (1986): The hormone regulatory element of mouse mammary tumor virus mediates progesterone induction. EMBO J 5: 2237–2240

    PubMed  CAS  Google Scholar 

  • Cato ACB, Henderson D, Ponta H (1987): The hormone response element of the mouse mammary tumour virus DNA mediates the progestin and androgen induction of transcription in the pro viral long terminal repeat region. EMBO J 6: 363–368

    PubMed  CAS  Google Scholar 

  • Cato ACB, Weinmann J (1988): Mineralocorticoid regulation of transfected mouse mammary tumour virus DNA in cultured kidney cells. J Cell Biol 106: 2119–2125

    Article  PubMed  CAS  Google Scholar 

  • Cho H, Katzenellenbogen BS (1993): Synergistic activation of estrogen receptor-mediated transcription by estradiol and protein kinase activators. Mol Endocrinol 7: 441–452

    Article  PubMed  CAS  Google Scholar 

  • Colgan J, Wampler S, Manley JL (1993): Interaction between a transcriptional activator and transcription factor IIB in vivo. Nature 362: 549–553

    Article  PubMed  CAS  Google Scholar 

  • Conaway RC, Conaway JW (1993): General initiation factors for RNA polymerase II. Annu Rev Biol 3: 760–769

    Google Scholar 

  • Cooney A J, Tsai SY, O’Malley BW, Tsai M-J (1992): Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimer binds to different GGTCA response elements allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone and retinoic acid receptors. Mol Cell Biol 12: 4153–4163

    PubMed  CAS  Google Scholar 

  • Cooney AJ, Leng X, Tsai SY, O’Malley BW, Tsai M-J (1993): Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transactivation by the vitamin D, thyroid hormone, and retinoic acid receptors. J Biol Chem 268: 4152–4160

    PubMed  CAS  Google Scholar 

  • Cooney AJ, Tsai SY (1994): Nuclear receptor—DNA interactions. In: Mechanism of Steroid Hormone Regulation of Gene Transcription, Tsai M-J, O’Malley BW, eds. Austin: R.G. Landes Company

    Google Scholar 

  • Corthesy B, Hipskind R, Theulaz I, Wahli W (1988): Estrogen-dependent in vitro transcription from the vitellogenin promoter in liver nuclear extracts. Science 239: 1137–1139

    Article  PubMed  CAS  Google Scholar 

  • Dahlman-Wright K, Wright A, Gustafsson JA, Carlstedt-Duke J (1990): Interaction of the glucocorticoid receptor DNA-binding domain with DNA as a dimer is mediated by a short segment of five amino acids. J Biol Chem 265: 14030–14035

    PubMed  CAS  Google Scholar 

  • Damm K, Thompson CC, Evans RM (1989): Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature 339: 593–597

    Article  PubMed  CAS  Google Scholar 

  • Danielian PS, White R, Lees JA, Parker MG (1992): Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J 11: 1025–1033

    PubMed  CAS  Google Scholar 

  • Danielsen M, Hinck L, Ringold GM (1989): Two amino acids within the knuckle of the first zinc finger specify DNA response element activation by the glucocorticoid receptor. Cell 57: 1131–1132

    Article  PubMed  CAS  Google Scholar 

  • Darbre P, Page M, King RJB (1986): Androgen regulation by the long terminal repeat of mouse mammary tumour virus. Mol Cell Biol 6: 2847–2854

    PubMed  CAS  Google Scholar 

  • Darling DS, Beebe JS, Burnside J, Winslow ER, Chin WW (1991): 3,5,3′-triiodothyronine (thyroid hormone) receptor-auxiliary protein (TRAP) binds DNA and forms heterodimers with the thyroid hormone receptor. Mol Cell Endocrinol 5: 73–84

    Google Scholar 

  • Debuire B, Henry C, Benaissa M, Biserte G, Claverie JM, Saule S, Martin P, Stehelin

    Google Scholar 

  • D (1984): Sequencing the erbA gene of avian erythroblastosis virus reveals a new type of oncogene. Science 224: 1456–1459

    Article  Google Scholar 

  • Denner LA, Weigel NL, Maxwell BL, Schrader WT, O’Malley BW (1990): Regulation of progesterone receptor-mediated transcription by phosphorylation. Science 250: 1740–1743

    Article  PubMed  CAS  Google Scholar 

  • Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR (1990): Transcription factor interactions: Selectors of positive or negative regulation from a single DNA element. Science 249: 1266–1272

    Article  PubMed  CAS  Google Scholar 

  • Durand B, Saunders M, Leroy P, Leid M, Chambon P (1992): A\\-trans and 9-cis retinoic acid induction of CRABP II transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 71: 73–85

    Article  PubMed  CAS  Google Scholar 

  • Eilers M, Picard D, Yamamoto KR, Bishop JM (1989): Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340: 66–68

    Article  PubMed  CAS  Google Scholar 

  • Elliston JF, Fawell SE, Klein-Hitpass L, Tsai SY, Tsai M-J, Parker MG, O’Malley BW (1990): Mechanism of estrogen receptor-dependent transcription in a cell- free system. Mol Cell Biol 10: 6607–6612

    PubMed  CAS  Google Scholar 

  • Evans RM (1988): The steroid and thyroid hormone receptor superfamily. Science 240: 889–895

    Article  PubMed  CAS  Google Scholar 

  • Fawell SE, Lees J A, White R, Parker MG (1990a): Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 60: 953–962

    Article  PubMed  CAS  Google Scholar 

  • Fawell SE, White R, Hoare S, Sydenham M, Page M, Parker MG (1990b): Inhibition of estrogen receptor-DNA binding by the “pure” antiestrogen ICI 164,384 appears to be mediated by impaired receptor dimerization. Proc Natl Acad Sci USA 87: 6883–6887

    Article  PubMed  CAS  Google Scholar 

  • Folkers GE, Van der Leede BM, van der Saag PT (1993): The retinoic acid receptor- beta2 contains two separate cell-specific transactivation domains, at the N- terminus and in the ligand-binding domain. Mol Endo 7: 616–627

    Article  CAS  Google Scholar 

  • Fondell JD, Roy AL, Roeder RG (1993): Unliganded thyroid hormone receptor inhibits formation of a functional preinitiation complex: implications for active repression. Genes Dev 7: 1400–1410

    Article  PubMed  CAS  Google Scholar 

  • Force W, Tillman JB, Sprung CN, Spindler SR (1994): Homodimer and heterodimer DNA binding and transcriptional responsiveness to triiodothyronine (T3) and 9- cis retinoic acid are determined by the number and order of high affinity half-sites in a T3 response element. J Biol Chem 269: 8863–8871

    PubMed  CAS  Google Scholar 

  • Forman BM, Samuels HH (1990): Interactions among a subfamily of nuclear hormone receptors: The regulatory zipper model. Mol Endocrinol 4: 1293–1301

    Google Scholar 

  • Freedman LP, Yoshinaga SK, Vanderbilt JN, Yamamoto KR (1989): In vitro transcription enhancement by purified derivatives of the glucocorticoid receptor. Science 245: 298–301

    Article  PubMed  CAS  Google Scholar 

  • Gandrillon O, Jurdic P, Pain B, Desbois C, Madjar JJ, Moscovici MG, Moscovici C, Samarut J (1989): Expression of the v-erbA product an altered nuclear hormone receptor is sufficient to transform erythrocytic cells in vitro. Cell 58: 115–121

    Article  PubMed  CAS  Google Scholar 

  • Giguere V, Ong ES, Segui P, Evans RM (1987): Identification of a receptor for the morphogen retinoic acid. Nature 330: 624–629

    Article  PubMed  CAS  Google Scholar 

  • Gill G, Ptashne M (1988): Negative effect of the transcriptional activator GAL4. Nature 334: 721–724

    Article  PubMed  CAS  Google Scholar 

  • Glass CK, Lipkin SM, Devary OV, Rosenfeld MG (1989): Positive and negative regulation of gene transcription by a retinoic acid-thyroid hormone receptor heterodimer. Cell 59: 697–708

    Article  PubMed  CAS  Google Scholar 

  • Glass CK, Devary OV, Rosenfeld MG (1990): Multiple cell type-specific proteins differentially regulate target sequence recognition by the a retinoic acid receptor. Cell 63: 729–738

    Article  PubMed  CAS  Google Scholar 

  • Glineur C, Bailly A, Ghysdael J (1989): The c-erbA alpha-encoded thyroid hormone receptor is phosphorylated in its amino terminal domain by casein kinase II. Oncogene 4: 1247–1254

    PubMed  CAS  Google Scholar 

  • Green S, Chambon P (1987): Oestradial induction of a glucocorticoid-responsive gene by a chimaeric receptor. Nature 325: 75–78

    Article  PubMed  CAS  Google Scholar 

  • Green S, Chambon P (1988): Nuclear receptors enhance our understanding of transcription regulation. Trends Genet 4: 309–314

    Article  PubMed  CAS  Google Scholar 

  • Gronemeyer H (1993): Transcription activation by nuclear receptors. Receptor Res 13: 667–691

    CAS  Google Scholar 

  • Guiochon-Mantel A, Loosfelt H, Lescop P, Sar S, Atger M, Perrot-Applanat M, Milgrom E (1989): Mechanisms of nuclear localization of the progesterone receptor: evidence for interaction between monomers. Cell 57: 1147–1154

    Article  PubMed  CAS  Google Scholar 

  • Ha I, Roberts S, Maldonado E, Sun X, Kim LU, Green M, Reinberg D (1993): Multiple functional domains of human transcription factor IIB distinct interactions with two general transcription factors and RNA polymerase II. Gene Dev 7: 1021–1032

    Article  PubMed  CAS  Google Scholar 

  • Ham J, Thomson A, Needham M, Webb P, Parker M (1988): Characterization of response elements for androgen glucocorticoids and progestins in mouse mammary tumor virus. Nucleic Acids Res 16: 5263–5277

    Article  PubMed  CAS  Google Scholar 

  • Hazel TG, Nathans D, Lau LF (1988): A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc Natl Acad Sci USA 85: 8444–8448

    Article  PubMed  CAS  Google Scholar 

  • Hazel TG, Misra R, Davis IJ, Greenberg ME, Lau LF (1991): NUR77 is differentially modified in PC 12 cells upon membrane depolarization and growth factor treatment. Mol Cell Biol 11: 3239–3246

    PubMed  CAS  Google Scholar 

  • Hernandez N (1993): TBP, a universal eukaryotic transcription factor? Genes Dev 7: 1291–1308

    Article  PubMed  CAS  Google Scholar 

  • Hollenberg SM, Evans RM (1988): Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell 55: 899–906

    Article  PubMed  CAS  Google Scholar 

  • Hudson LG, Thompson KL, Xu J, Gill GN (1990): Identification and characterization of a regulated promoter element in the epidermal growth factor receptor gene. Proc Natl Acad Sci USA 87: 7536–7540

    Article  PubMed  CAS  Google Scholar 

  • Ignar-Trowbridge DM, Teng CT, Ross KA, Parker MG, Korach KS, McLachlan JA (1993): Peptide growth factors elicit estrogen receptor-dependent transcriptional activation of an estrogen-responsive element. Mol Endocrinol 7: 992–998

    Article  PubMed  CAS  Google Scholar 

  • Ing NH, Beekman JM, Tsai SY, Tsai M-J, O’Malley BW (1992): Members of the steroid hormone receptor superfamily interact with TFIIB (S300II). J Biol Chem 267: 17617–17623

    PubMed  CAS  Google Scholar 

  • Ip MM, Shea WK, Rowan BG (1993): Mutant glucocorticoid receptors in lymphoma. Ann NY Acad Sci 684: 94–115

    Article  PubMed  CAS  Google Scholar 

  • Jacq X, Brou C, Lutz Y, Davidson I, Chambon P, Tora L (1994): Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. Cell 79107–17

    Google Scholar 

  • Jantzen HM, Strahle U, Gloss B, Stewart F, Schmid W, Boshart M, Miksicek R, Schutz G (1987): Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotranferase gene. Cell 49: 29–38

    Article  PubMed  CAS  Google Scholar 

  • Jonat G, Rahmsdorf HJ, Park KK, Cato ACB, Gebel S, Ponta H, Herrlich P (1990): Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/ Jun) activity by glucocorticoid hormone. Cell 62: 1189–1204

    Article  PubMed  CAS  Google Scholar 

  • Jurutka PW, Hsieh JC, MacDonald PN, Terpening CM, Haussler CA, Haussler MR, Whitfield GK (1993): Phosphorylation of serine 208 in the human vitamin D receptor The predominant amino acid phosphorylated by casein kinase II in vitro and identification as a significant phosphorylation site in intact cells. J Biol Chem 268: 6791–6799

    PubMed  CAS  Google Scholar 

  • Karin M, Haslinger A, Holtgreve H, Richards RI, Krauter P, Westphal HM, Beato M (1984): Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein—IIA gene. Nature 308: 513–519

    Article  PubMed  CAS  Google Scholar 

  • Keidel S, LeMotte P, Apfel C (1994): Different agonist- and antagonist-induced conformational changes in retinoic acid receptors analyzed by protease mapping. Mol Cell Biol 14: 287–298

    PubMed  CAS  Google Scholar 

  • Klein-Hitpass L, Tsai SY, Weigel NL, Allan GF, Riley D, Rodriguez R, Schrader WT, Tsai M-J, O’Malley BW (1990): The progesterone receptor stimulates cell- free transcription by enhancing the formation of a stable preinitiation complex. Cell 60: 247–257

    Article  PubMed  CAS  Google Scholar 

  • Kliewer SA, Umesono K, Heyman RA, Mangelsdorf DJ, Dyck JA, Evans RM (1992a): Retinoid X receptor-COUP-TF interactions modulate retinoic acid signalling. Proc Natl Acad Sci USA 89: 1448–1452

    Article  PubMed  CAS  Google Scholar 

  • Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM (1992b): Retinoid X receptor interacts with nuclear receptors in retinoic acid thyroid hormone and vitamin D signalling. Nature 355:446–449 Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM (1992c): Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358: 771–774

    Article  PubMed  CAS  Google Scholar 

  • Konig H, Ponta H, Rahmsdorf HJ, Herrlich P (1992): Interference between pathway- specific transcription factors: glucocorticoids antagonize phorbol ester-induced AP-1 activity without altering AP-1 site occupation in vivo. EMBO J11:2241–2246

    Google Scholar 

  • Kumar V, Green S, Staub A, Chambon P (1986): Localization of the oestradiol- binding and putative DNA-binding domains of the human oestrogen receptor. EMBO J 5: 2231–2236

    PubMed  CAS  Google Scholar 

  • Kumar V, Green S, Stack G, Berry M, Jin J, Chambon P (1987): Functional domains of the human estrogen receptor. Cell 51: 941–951

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Chambon P, (1988): The estrogen receptor binds tightly to its response

    Google Scholar 

  • element as a ligand-induced homodimer. Cell 55:145–156

    Google Scholar 

  • Kurokawa R, Yu VC, Naar A, Kyakumoto S, Han Z, Silverman S, Rosenfeld MG, Glass CK (1993): Differential orientations of the DNA-binding domain and carboxy-terminal dimerization interface regulatory binding site selection by nuclear receptor heterodimers. Genes Dev 7: 1423–1435

    Article  PubMed  CAS  Google Scholar 

  • Lala DS, Rice DA, Parker KL (1992): Steroidogenic factor 1 a key regulator of steroidogenic enzyme expression is the mouse homolog of fushi tarazu-factor 1. Mol Endocrinol 6:1249–1258 Landschultz WH, Johnson PF, McKnight SL (1988): The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759–1764

    Google Scholar 

  • Laudet V, Hanni C, Coll J, Catzeflis F, Stehelin D (1992): Evolution of the nuclear receptor gene superfamily. EMBO J 11: 1003–1013

    PubMed  CAS  Google Scholar 

  • Law SW, Conneely OM, DeMayo FJ, O’Malley BW (1992): Identification of a new brain specific transcription factor Nurrl. Mol Endocrinol 6: 2129–2135

    Article  PubMed  CAS  Google Scholar 

  • Lazar MA, Berrodin TJ, Harding HP (1991): Differential DNA binding by monomeric homodimeric and potentially heteromeric forms of the thyroid hormone receptor. Cell Biol 11: 5005–5015

    CAS  Google Scholar 

  • Lee MS, Gippert GP, Soman KV, Case DA, Wright PE (1989): Three dimensional solution structure of a single zinc finger DNA-binding domain. Science 245: 635–637

    Article  PubMed  CAS  Google Scholar 

  • Lee MS, Kliewer SA, Provencal J, Wright PE, Evans RM (1993): Structure of the retinoid X receptor alpha DNA binding domain: a helix required for homodimeric DNA binding. Science 260: 1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Lees J A, Fawell SE, White R, Parker MG (1990): A 22-amino-acid peptide restores DNA-binding activity to dimerization-defective mutants of the estrogen receptor. Mol Cell Biol 10: 5529–5531

    PubMed  CAS  Google Scholar 

  • Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, Chen JY, Staub A, Gamier JM, Chambon P (1992): Purification cloning and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 68: 377–397

    Article  PubMed  CAS  Google Scholar 

  • Leid M (1994): Ligand-induced alteration of the protease sensitivity of retinoid X receptor alpha. J Biol Chem 269: 14175–14181

    PubMed  CAS  Google Scholar 

  • Leng X, Blanco J, Tsai SY, Ozato K, O’Malley BW, Tsai M-J (1994): Mechanisms for synergistic activation of thyroid hormone receptor and retinoid X receptor on different response elements. J Biol Chem 269: 31436–31442

    PubMed  CAS  Google Scholar 

  • Leng X, Blanco J, Tsai SY, Ozato K, O’Malley BW, Tsai M-J (1995): Mouse retinoid X receptor contains a separable ligand binding and transactivation domain in its E region. Mol Cell Biol 15: 255–263

    PubMed  CAS  Google Scholar 

  • Leng X, Tsai SY, O’Malley BW, Tsai M-J (1993): Ligand-dependent conformational changes in homodimers and heterodimers of the thyroid hormone and retinoic acid receptors. J Steroid Biochem Mol Biol 46: 643–661

    Article  PubMed  CAS  Google Scholar 

  • Levine M, Manley JL (1989): Transcriptional repression of eukaryotic promoters. Cell 59: 405–408

    Article  PubMed  CAS  Google Scholar 

  • Liao J, Ozono K, Sone T, McDonnell DP, Pike WJ (1990): Vitamin D receptor interaction with specific DNA requires a nuclear protein and 125-dihydroxy vitamin D3. Proc Natl Acad Sci USA 87: 9751–9755

    Article  PubMed  CAS  Google Scholar 

  • Lin K, Parkison C, McPhie P, Cheng S (1991): An essential role of domain D in the hormone-binding activity of human betal thyroid hormone nuclear receptor. Mol Endocrinol 5: 485–492

    Article  PubMed  CAS  Google Scholar 

  • Lin YS, Ha I, Maldonado E, Reinberg D, Green MR (1991): Binding of general transcription factor TFIIB to an acidic activating region. Nature 353: 569–571

    Article  PubMed  CAS  Google Scholar 

  • Lucibello FC, Slater EP, Jooss KU, Beato M, Muller R (1990): Mutual transrepression of Fos and the glucocorticoid receptor: involvement of a functional domain in Fos which is absent in FosB. EMBO J 9: 2827–2834

    PubMed  CAS  Google Scholar 

  • Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB (1991): Crystallographic analysis of the interaction of the glucocortioid receptor with DNA. Nature 352: 497–505

    Article  PubMed  CAS  Google Scholar 

  • Lutz B, Kuratani S, Thaller C, Eichele G (1994): Nuclear receptors in development and differentiation In: Mechanism of Steroid Hormone Regulation of Gene Transcription. Tsai M-J, O’Malley BW, eds. Austin: R.G. Landes Company Mader S, Kumar V, deVerneuil H, Chambon P (1989): Three amino acids of the oestrogen receptor are essential to its ability to distinguish an oestrogen from a glucocorticoid-responsive element. Nature 338:271–274

    Google Scholar 

  • Mader S, Chambon P, White JH (1993): Defining a minimal estrogen receptor DNA binding domain. Nucleic Acids Res 21: 1125–1132

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Umesono K, Kliewer SA, Borgmeyer U, Ong ES, Evans RM (1991): A direct repeat in the cellular retinol-binding protein type II gene confers differential regulation by RXR and RAR. Cell 66: 555–561

    Article  PubMed  CAS  Google Scholar 

  • Marks MS, Hallenbeck PL, Nagata T, Segars JH, Appella E, Nikodem VM, Ozato K (1992): H-2RIIBP [RXR-ß] heterodimerization provides a mechanism for combinatorial diversity in the regulation of retinoic acid and thyroid hormone responsive genes. EMBO J 11: 1419–1435

    PubMed  CAS  Google Scholar 

  • Meyer ME, Gronemeyer H, Turcotte B, Bocquel MT, Tasset D, Chambon P (1989): Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 57: 433–442

    Article  PubMed  CAS  Google Scholar 

  • Meyer ME, Quirin-Stricker C, Lerouge T, Bocquel MT, Gronemeyer H (1992): A limiting factor mediates the differential activation of promoters by the human progesterone receptor isoforms. J Biol Chem 267: 10882–10887

    PubMed  CAS  Google Scholar 

  • Miksicek R, Borgmeyer U, Nowock J (1994): Interaction of the TGGCA-binding protein with upstream sequences is required for efficient transcription of mouse mammary tumour virus. EMBO J 6: 1355–1360

    Google Scholar 

  • Milbrandt J (1988): Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron 1: 183–188

    Article  PubMed  CAS  Google Scholar 

  • Miner JN, Yamamoto KR (1991): Regulatory crosstalk at composite response element. Trends Biochem Sci 16: 423–426

    Article  PubMed  CAS  Google Scholar 

  • Miner JN, Yamamoto KR (1992): The basic region of AP-1 specifies glucocorticoid receptor activity at a composite response element. Genes Dev 6: 2491–2501

    Article  PubMed  CAS  Google Scholar 

  • Mordacq JC, Linzer DIH (1994): Co-localization of elements required for phorbol ester stimulation and glucocorticoid repression of proliferin gene expression. Genes Dev 3: 760–769

    Article  Google Scholar 

  • Murry MB, Towle HC (1989): Identification of nuclear factors that enhance binding of the thyroid hormone receptor to a thyroid hormone response element. Mol Endocrinol 3: 1434–1442

    Article  Google Scholar 

  • Naar AM, Boutin JM, Lipkin SM, Yu VC, Holloway JM, Glass CK, Rosenfeld MG (1991): The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 657: 1267–1279

    Article  Google Scholar 

  • Nicholson RC, Mader S, Nagpal S, Leid M, Rochette-Egly C, Chambon P (1990): Negative regulation of the rat stromelysin gene promoter by retinoic acid is mediated by an API binding site. EMBO J 9: 4443–4454

    PubMed  CAS  Google Scholar 

  • O’Donnell AL, Rosen ED, Darling DS, Koenig RJ (1991): Thyroid hormone receptor mutations that interfere with transcriptional activation also interfere with receptor interaction with a nuclear protein. Mol Endocrinol 5: 94–99

    Article  PubMed  Google Scholar 

  • O’Malley BW (1990): The steroid receptor superfamily: more excitement predicted for the future. Mol Endocrinol 4: 363–369

    Article  PubMed  Google Scholar 

  • Ohno CK, Petkovich M (1992): FTZ-Flb a novel member of the drosophila nuclear receptor family. Mech Dev 40: 13–24

    Article  Google Scholar 

  • Oro AE, Hollenberg SM, Evans RM (1988): Transcriptional inhibition by a glucocorticoid receptor-beta-galactosidase fusion protein. Cell 55: 1109–1114

    Article  PubMed  CAS  Google Scholar 

  • Orti E, Bodwell JE, Munck A (1992): Phosphorylation of steroid hormone receptors. Endocrine Rev 13: 105–128

    CAS  Google Scholar 

  • Parker MG (1990): Structure and function of nuclear hormone receptors. Semin Cancer Biol 1: 81–87

    PubMed  CAS  Google Scholar 

  • Parker MG (1993): Steroid and related receptors. Cell Biol 5: 499–504

    CAS  Google Scholar 

  • Parvin JD, Timmers HT, Sharp PA (1993): Promoter specificity of basal transcription factors. Cell 68: 1135–1144

    Article  Google Scholar 

  • Perlmann T, Rangarajan PN, Umesono K, Evans RM (1993): Determinants for selective RAR and TR recognition of direct repeat HREs. Genes Dev 7: 1411–1422

    Article  PubMed  CAS  Google Scholar 

  • Petkovich M, Brand NJ, Krust A, Chambon P (1987): A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330: 444–450

    Article  PubMed  CAS  Google Scholar 

  • Picard D, Salser SJ, Yamamoto KR (1988): A movable and regulatable inactivation function within the steroid binding domain of the glucocorticoid receptor. Cell 54: 1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Picard D, Yamamoto KR (1987): Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J 6: 3333–3340

    PubMed  CAS  Google Scholar 

  • Pike WJ, Sleator NM (1985): Hormone-dependent phosphorylation of the 1,25 dihydroxyvitamin D3 receptor is generated through a hormone-dependent phosphorylation. Biochem Biophys Res Commun 131: 378–385

    Article  PubMed  CAS  Google Scholar 

  • Power RF, Lydon JP, Conneely OM, O’Malley BW (1991a): Dopamine activation of an orphan member of the steroid receptor superfamily. Science 252: 1546–1548

    Article  PubMed  CAS  Google Scholar 

  • Power RF, Mani SK, Codina J, Conneely OM, O’Malley BW (1991b): Dopaminergic and ligand-independent activation of steroid hormone receptors. Science 254: 1636–1639

    Article  PubMed  CAS  Google Scholar 

  • Qiu YH, Cooney AJ, Kuratani S, DeMayo FJ, Tsai SY, Tsai M-J (1994a): Differential expression of COUP-TFI and II in mouse developing CNS. Proc Natl Acad Sci USA 91: 4451–4455

    Article  PubMed  CAS  Google Scholar 

  • Qiu YH, Tsai SY, Tsai M-J (1994b): COUP-TF: An orphan member of the steroid/thyroid hormone receptor superfamily. Trends Endocrinol Metab 5: 234–239

    Article  PubMed  CAS  Google Scholar 

  • Renkawitz R, Schutz G, von der Ahe D, Beato M (1984): Sequences in the promoter region of the chicken lysozyme gene required for steroid regulation and receptor binding. Cell 37: 503–510

    Article  PubMed  CAS  Google Scholar 

  • Renkawitz R (1990): Transcriptional repression in eukaryotes. Trends Genet 6: 192–197

    Article  PubMed  CAS  Google Scholar 

  • Rochette-Egly C, Gaub M, Lutz Y, Ali S, Scheuer I, Chambon P (1992): Retinoic acid receptor-beta: Immunodetection and phosphorylation on tyrosine residues. Mol Endocrinol 6: 2197–2209

    Article  PubMed  CAS  Google Scholar 

  • Rowe A, Eager NSC, Brickell PM (1991): A member of the RXR nuclear receptor family is expressed in the neural-crest-derived cells of the developing peripheral nervous system. Development 111: 771–778

    PubMed  CAS  Google Scholar 

  • Rowe A, Brickell PM (1993): Current status review: the nuclear retinoid receptors. Int J Exp Path 74: 117–126

    CAS  Google Scholar 

  • Ruberte E, Kastner P, Dolle P, Krust A, Leroy P, Mendelsohn C, Zelent A, Chambon P (1991): Retinoic acid receptor in the embryo. Semin Devel Biol 2: 153–159

    Google Scholar 

  • Ryseck RP, MacDonald-Bravo H, Mattei MG, Ruppert S, Bravo R (1989): Structure mapping and expression of a growth factor inducible gene encoding a putative nuclear hormonal binding receptor. EMBO J 8: 3327–3335

    PubMed  CAS  Google Scholar 

  • Sabbah M, Gouilleux F, Sola B, Redeuilh G, Baulieu EE (1991): Structural differences between the hormone and antihormone estrogen receptor complexes bound to the hormone response element. Proc Natl Acad Sci USA 88: 390–394

    Article  PubMed  CAS  Google Scholar 

  • Sap J, Munoz A, Schmitt J, Stunnenberg HG, Vennstrom B (1989): Repression of transcription mediated at a thyroid hormone response element by the v-erb-A oncogene product. Nature 340: 242–244

    Article  PubMed  CAS  Google Scholar 

  • Sartorius CA, Melville MY, Hovland AR, Tung L, Takimoto GS, Horwitz KB (1994): A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform. Mol Endocrinol 8: 1347–1360

    Article  PubMed  CAS  Google Scholar 

  • Scearce LM, Laz TM, Hazel TG, Lau LF, Taub R (1993): RNR-1 a nuclear receptor in the NGFI-B/Nur77 family that is rapidly induced in degenerating liver. J Biol Chem 268: 8855–8861

    PubMed  CAS  Google Scholar 

  • Schrader M, Muller KM, Carlberg C (1994a): Thyroid hormone receptor function as monomeric ligand-induced transcription factor on octameric half-sites. J Biol Chem 269: 5501–5504

    PubMed  CAS  Google Scholar 

  • Schrader M, Muller KM, Nayeri S, Kahlen JP, Carlberg C (1994b): Vitamin D3- thyroid hormone receptor heterodimer polarity directs ligand sensitivity of transactivation. Nature 370: 382–386

    Article  PubMed  CAS  Google Scholar 

  • Schule R, Muller E, Kaltschmidt C, Renkawitz R (1988a): Many transcription factors interact synergistically with steroid receptors. Science 242: 1418–1420

    Article  PubMed  CAS  Google Scholar 

  • Schule R, Muller E, Otsuka-Murakami H, Renkawitz R (1988b): Cooperativity of the glucocorticoid receptor and the CACCC-box binding factor. Nature 332: 87–90

    Article  PubMed  CAS  Google Scholar 

  • Schule R, Rangarajan PN, Kliewer SA, Ransone LJ, Bolado J, Yang N, Verma IM, Evans RM (1990a): Retinoic acid is a negative regulator of AP-1 responsive genes. Cell 62: 1217–1226

    Article  PubMed  CAS  Google Scholar 

  • Schule R, Rangarajan PN, Kliewer SA, Ransone LJ, Bolado J, Yang N, Verma IM, Evans RM (1990b): Functional antagonism between oncoprotein c-jun and the glucocorticoid receptor. Cell 62: 1217–1226

    Article  PubMed  CAS  Google Scholar 

  • Schwabe JWR, Neuhaus D, Rhodes D (1990): Solution structure of the DNA-binding domain of the oestrogen receptor. Nature 340: 458–461

    Article  Google Scholar 

  • Schwabe JWR, Chapman L, Finch JT, Rhodes D (1993): The crystal structure of the complex between the oestrogen receptor DNA-binding domain and DNA at 24A: how receptors discriminate between their response elements. Cell 75: 567–578

    Article  PubMed  CAS  Google Scholar 

  • Shemshedini L, Knauthe R, Sassone-Corsi P, Pornon A, Gronemeyer H (1991): Cell specific inhibitory and stimulatory effects of fos and jun on transcription activation by nuclear receptors. EMBO J 10: 3839–3849

    PubMed  CAS  Google Scholar 

  • Somers JP, DeFranco DB (1992): Effects of okadaic acid a protein phosphatase inhibitor on glucocorticoid receptor-mediated enhancement. Mol Endocrinol 6: 26–34

    Article  PubMed  CAS  Google Scholar 

  • Strahle U, Klock G, Schutz G (1987): A DNA sequence of 15 base pairs is sufficient to mediate both glucocorticoid and progesterone induction of gene expression. Proc Natl Acad Sci USA 84: 7871–7875

    Article  PubMed  CAS  Google Scholar 

  • Strahle U, Schmid W, Schutz G (1988): Synergistic action of the glucocorticoid receptor with transcription factors. EMBO J 7: 3389–3395

    PubMed  CAS  Google Scholar 

  • Tasset D, Tora L, Fromental C, Scheer E, Chambon P (1990): Distinct classes of transcriptional activating domains function by different mechanisms. Cell 62: 1177–1187

    Article  PubMed  CAS  Google Scholar 

  • Thompson CC, Evans RM (1989): Trans-activation by thyroid hormone receptors: functional parallels with steroid hormone receptors. Proc Natl Acad Sci USA 86: 3494–3498

    Article  PubMed  CAS  Google Scholar 

  • Tini M, Otulakowski G, Breitman ML, Tsui LC, Giguere V (1993): An everted repeat mediates retinoic acid induction of the F-crystallin gene: Evidence of a direct role for retinoids in lens development. Genes Dev 7: 295–307

    Article  PubMed  CAS  Google Scholar 

  • Toohey MG, Lee JW, Huang M, Peterson DO (1990): Functional elements of the steroid hormone-responsive promoter of mouse mammary tumor virus. J Virol 64: 4477–4488

    PubMed  CAS  Google Scholar 

  • Tora L, White JH, Brou C, Tasset DM, Webster NJG, Scheer E, Chambon P (1989): The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59: 477–487

    Article  PubMed  CAS  Google Scholar 

  • Tran PBV, Zhang XK, Salbert G, Hermann T, Lehmann JM, Pfahl M (1992): COUP orphan receptors are negative regulators of retinoic acid response pathways. Mol. Cell Biol 12: 4666–4676

    PubMed  CAS  Google Scholar 

  • Truss M, Beato M (1993): Steroid hormone receptors: Interaction with deoxyribonucleic acid and transcription factors. Endocrine Rev 14: 459–479

    CAS  Google Scholar 

  • Tsai M-J, O’Malley BW (1994): Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63: 451–486

    Article  PubMed  CAS  Google Scholar 

  • Tsai SY, Sagami I, Wang LH, Tsai M-J, O’Malley BW (1987): Interactions between a DNA-binding transcription factor (COUP) and a non-DNA binding factor (S300-11). Cell 50: 701–709

    Article  PubMed  CAS  Google Scholar 

  • Tsai SY, Carlstedt-Duke J, Weigel NL, Dahlman K, Gustafsson JA, Tsai M-J, O’Malley BW (1988): Molecular interactions of steroid hormone receptor with its enhancer element: evidence for receptor dimer formation. Cell 55: 361–369

    Article  PubMed  CAS  Google Scholar 

  • Tsai SY, Tsai M-J, O’Malley BW (1989): Cooperative binding of steroid hormone receptors contributes to transcriptional synergism at target enhancer elements. Cell 57: 443–448

    Article  PubMed  CAS  Google Scholar 

  • Tsai SY, Srinivasan G, Allan GF, Thompson EB, O’Malley BW, Tsai M-J (1990): Recombinant human glucocorticoid receptor induces transcription of hormone response genes in vitro. J Biol Chem 265: 17055–17061

    PubMed  CAS  Google Scholar 

  • Umesono K, Giguere V, Glass CK, Rosenfeld MG, Evans RM (1988): Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature 336:262–265 Umesono K, Murakami KK, Thompson CC, Evans RM (1991): Direct repeats as selective response elements for the thyroid hormone retinoic acid and vitamin D3 receptors. Cell 65: 1255–1266

    Article  Google Scholar 

  • Umesono K, Evans RM (1989): Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57: 1139–1146

    Article  PubMed  CAS  Google Scholar 

  • Usala SJ (1991): Molecular diagnosis and characterization of thyroid hormone resistance syndromes. Thyroid 1: 361–367

    Article  PubMed  CAS  Google Scholar 

  • von der Ahe D, Janich S, Schneider C, Renkawitz R, Schutz G, Beato M (1985): Glucocorticoid and progesterone receptors bind to the same sites in two hormonally regulated promoters. Nature 313: 706–709

    Article  PubMed  Google Scholar 

  • Wahli W, Martinez E (1991): Superfamily of steroid nuclear receptors: positive and negative regulators of gene expression. FASEB J 5: 2243–2249

    PubMed  CAS  Google Scholar 

  • Wang LH, Tsai SY, Cook RG, Beattie WG, Tsai M-J, O’Malley BW (1989): COUP transcription factor is a member of the steroid receptor superfamily. Nature 340: 163–166

    Article  PubMed  CAS  Google Scholar 

  • Webster NJG, Green S, Jin J, Chambon P (1988): The hormone-binding domains of the estrogen and glucocorticoid receptors contain an inducible transcription activation function. Cell 54: 199–207

    Article  PubMed  CAS  Google Scholar 

  • Weigel NL (1994): Receptor phosphorylation. In: Mechanism of Steroid Hormone Regulation of Gene Transcription. Tsai M-J, O’Malley BW, eds. Austin: R.G. Landes Company

    Google Scholar 

  • Weiland S, Dobbeling U, Rusconi S (1991): Interference and synergism of glucocorticoid receptor and octamer factors. EMBO J 10: 2513–2522

    Google Scholar 

  • Weinberger C, Hollenberg SM, Rosenfeld MG, Evans RM (1985): Domain structure of human glucocorticoid receptor and its relationship to the V-erbA oncogene product. Nature 318: 670–672

    Article  PubMed  CAS  Google Scholar 

  • Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM (1986): The c-erb-A gene encodes a thyroid hormone receptor. Nature 324: 641–646

    Article  PubMed  CAS  Google Scholar 

  • Widom RL, Rhee M, Karathanasis SK (1992): Repression by ARP-1 sensitizes apolipoprotein Al gene responsiveness to RXR alpha and retinoic acid. Mol Cell Biol 12: 3380–3389

    PubMed  CAS  Google Scholar 

  • Wilson TE, Fahrner TJ, Johnston M, Milbrandt J (1991): Identification of the DNA binding site for NGFI-beta by genetic selection in yeast. Science 252: 1296–1300

    Article  PubMed  CAS  Google Scholar 

  • Wilson TE, Paulsen RE, Padgett KA, Milbrandt J (1992): Participation of non-zinc finger residues in DNA binding by two nuclear orphan receptors. Science 256: 107–110

    Article  PubMed  CAS  Google Scholar 

  • Wilson TE, Fahrner TJ, Milbrandt J (1993a): The orphan receptors NGFI-B and steroidogenic factor 1 establish monomer binding as a third paradigm of nuclear receptor-DNA interaction. Mol Cell Biol 13: 5794–5804

    PubMed  CAS  Google Scholar 

  • Wilson TE, Mouw AR, Weaver CA, Milbrandt J, Parker KL (1993b): The orphan nuclear receptor NGFI-ß regulates expression of the gene encoding steroid-21- hydroxylase. Mol Cell Biol 13: 861–868

    PubMed  CAS  Google Scholar 

  • Yamamoto KR (1985): Steroid receptor-regulated transcription of specific genes and gene network. Ann Rev Genet 19: 209–252

    Article  PubMed  CAS  Google Scholar 

  • Yang-Yen H, Chambard J, Sun Y, Smeal T, Schmidt TJ, Drouin J, Karin M (1990): Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62: 1205–1215

    Article  PubMed  CAS  Google Scholar 

  • Yao TP, Segraves WA, Oro AE, McKeown M, Evans RM (1992): Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 71: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Yao TP, Forman BM, Jiang Z, Cherbas L, Chen JD, Mckeown M, Cherbas P, Evans RM (1993): Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366: 476–479

    Article  PubMed  CAS  Google Scholar 

  • Yu VC, Delsert C, Andersen B, Holloway JM, Devary OV, Naar AM, Kim SY, Boutin JM, Glass CK, Rosenfeld MG (1991): A coregulator that enhances binding of retinoic acid thyroid hormone and vitamin D receptors to their cognate response elements. Cell 67: 1251–1266

    Article  PubMed  CAS  Google Scholar 

  • Zawel L, Reinberg D (1993): Initiation of transcription by RNA polymerase II: A multiple step process. Progress in Nucleic Acid Res Mol Biol 44: 69–108

    Google Scholar 

  • Zeng Z, Allan GF, Thaller C, Cooney AJ, Tsai SY, O’Malley BW, Tsai M-J (1994): Detection of potential ligands for nuclear receptors in cellular extracts. Endocrinol 135: 248–52

    Article  CAS  Google Scholar 

  • Zhang XK, Hoffmann B, Tran PBV, Graupner G, Pfahl M (1992): Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature 355: 441–446

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Leng, X., Tsai, S.Y., Tsai, MJ. (1996). The Nuclear Hormone Receptor Superfamily: Structure and Function. In: Vedeckis, W.V. (eds) Hormones and Cancer. Hormones in Health and Disease. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4266-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4266-6_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8715-5

  • Online ISBN: 978-1-4612-4266-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics