Skip to main content

Glucocorticoid Actions on Normal and Neoplastic Lymphocytes: Activation of Apoptosis

  • Chapter
Hormones and Cancer

Part of the book series: Hormones in Health and Disease ((HHD))

  • 76 Accesses

Abstract

The glucocorticoid steroid hormones are used as part of treatment plans for some forms of cancer because of their lytic and growth suppressive effects (see Chapter 17, this volume). It was believed for a long time that the lytic effect of glucocorticoids occurred only in thymocytes; however, it has now been shown that B cells are also sensitive to glucocorticoid treatment (Distelhorst, 1988; McConkey et al., 1991). Glucocorticoids are prescribed in the cases of chronic myeloid leukemia, Hodgkin’s lymphoma, non-Hodgkin’s lymphoma, and multiple myeloma (Polliack, 1991; Cidlowski and Schwartzman, 1993), although they also demonstrate growth suppressive effects on solid tumors (Alexander et al., 1993; Evers et al., 1993). Additionally, they are recommended as adjunct treatment for patients with cancerous complications such as metastatic spinal cord compression and brain metastases (Weissman, 1988; Sorensen et al., 1994). The first report concerning glucocorticoids and cancer was published in 1944 (Heilman and Kendall, 1944). Heilman and Kendall (1944) discovered that corticosterone treatment resulted in regression of a lymphatic tumor that had been transplanted into mice. Shortly after that, Dougherty and White (1945) observed that rat thymi underwent involution in response to injections of adrenal cortical hormones and adrenocorticotropin. Such information was suggestive that hormone treatment might also be useful in treating certain tumors in humans; however, further studies showed that humans did not respond in precisely the same manner to glucocorticoid treatment as mice and rats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander D, Goya L, Webster M, Haraguchi T, Firestone G (1993): Glucocorticoids coordinately disrupt a transforming growth factor alpha autocrine loop and suppress the growth of 13762NF-derived Con8 rat mammary adenocarcinoma cells. Cancer Res 53: 1808–1815

    PubMed  CAS  Google Scholar 

  • Alnemri E, Litwack G (1990): Activation of internucleosomal DNA cleavage in human CEM lymphocytes by glucocorticoid and novobiocin. J Biol Chem 265: 17323–17333

    PubMed  CAS  Google Scholar 

  • Alnemri E, Fernandes T, Haldar S, Croce C, Litwack G (1992): Involvement of bcl-2 in glucocorticoid-induced apoptosis of human pre-B-leukemias. Cancer Res 52: 491–495

    PubMed  CAS  Google Scholar 

  • Ambellan E, Hollander V (1966): The role of ribonuclease in regression of lymphosarcoma P1798. Cancer Res 26: 903–908

    PubMed  CAS  Google Scholar 

  • Bansal N, Houle A, Melnykovych G (1990): Dexamethasone-induced killing of neoplastic cells of lymphoid derivation: lack of early calcium involvement. J Cell Physiol 143: 105–109

    PubMed  CAS  Google Scholar 

  • Barinaga M (1994): Cell suicide: by ICE, not fire. Science 263: 754–756

    PubMed  CAS  Google Scholar 

  • Baughman G, Harrigan M, Campbell N, Nurrish S, Bourgeois S (1991): Genes newly identified as regulated by glucocorticoids in murine thymocytes. Mol Endocrinol 5: 637–644

    PubMed  CAS  Google Scholar 

  • Baughman G, Lesley J, Trotter J, Hyman R, Bourgeois S (1992): Tcl-30, A new T cell-specific gene expressed in immature glucocorticoid-sensitive thymocytes. J Immunol 149: 1488–1496

    PubMed  CAS  Google Scholar 

  • Bell P, Borthwick N (1975): Glucocorticoid effects on DNA-dependent RNA polymerase activity of rat thymocytes. J Steroid Biochem 7: 1147–1150

    Google Scholar 

  • Brake A, Wagenbach M, Julius D (1994): New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371: 519–523

    PubMed  CAS  Google Scholar 

  • Bruno S, Del Bino G, Lassota P, Giaretti W, Darzynkiewicz Z (1992): Inhibitors of proteases prevent endonucleolysis accompanying apoptotic death of HL-60 leukemic cells and normal thymocytes. Leukemia 6: 1113–1120

    PubMed  CAS  Google Scholar 

  • Cain K, Inayat-Hussein S, Wolfe J, Cohen G (1994): DNA fragmentation into 200–250 and/or 30–50 kilobase pair fragments in rat liver nuclei is stimulated by Mg2+ alone and Ca2+/Mg2+ but not by Ca2+ alone. FEBS Lett 349: 385–391

    PubMed  CAS  Google Scholar 

  • Caron-Leslie L, Cidlowski J (1991): Similar actions of glucocorticoids and calcium on the regulation of apoptosis in S49 cells. Mol Endocrinol 5: 1169–1179

    PubMed  CAS  Google Scholar 

  • Caron-Leslie L-A, Evans R, Cidlowski J (1994): Bcl-2 inhibits glucocorticoid-induced apoptosis but only partially blocks calcium ionophore or cycloheximide- regulated apoptosis in S49 cells. FASEB J 8: 639–645

    PubMed  CAS  Google Scholar 

  • Cerretti D, Kozlosky C, Mosley B, Nelson N, Van Ness K (1992): Molecular cloning of the interleukin-1 beta converting enzyme. Science 256: 97–100

    PubMed  CAS  Google Scholar 

  • Cidlowski J, Schwartzman R (1993): Corticosteroids. In: Cancer Medicine, Holland J, Frei E, Bast R, Kufe D, Morton D, Weichselbaum R, eds. Philadelphia: Lea xxamp; Febiger Cidlowski J (1982): Glucocorticoids stimulate ribonucleic acid degradation in isolated rat thymic lymphocytes in vitro. Endocrinology 111: 184–190

    Google Scholar 

  • Clarke C, Wills E (1978): The activation of lymphoid tissue lysosomal enzymes by steroid hormone. J Steroid Biochem 9: 135–139

    PubMed  CAS  Google Scholar 

  • Clawson G, Norbeck L, Hatem C, Rhodes C, Amiri P, McKerrow J, Patierno S, Fiskum G (1992): Ca2+-regulated serine protease associated with the nuclear scaffold. Cell Growth Diff 3: 827–838

    PubMed  CAS  Google Scholar 

  • Cohen J, Duke R (1984): Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol 132: 38–42

    PubMed  CAS  Google Scholar 

  • Colbert R, Young D (1986): Glucocorticoid-induced messenger ribonucleic acids in rat thymic lymphocytes: rapid primary effects specific for glucocorticoids. Endocrinology 119: 2598–2605

    PubMed  CAS  Google Scholar 

  • Darmon A, Ehrman N, Caputo A, Fujinaga J, Bleackley R (1994): The cytotoxic T cell proteinase granzyme B does not activate interleukin-1ß-converting enzyme. J Biol Chem 269: 32043–32046

    PubMed  CAS  Google Scholar 

  • Distelhorst C (1988): Glucocorticoids induce DNA fragmentation in human lymphoid leukemia cells. Blood 72: 1305–1309

    PubMed  CAS  Google Scholar 

  • Dougherty T, White A (1945): Functional alterations in lymphoid tissue induced by adrenal cortical secretion. Am J Anat 77: 81–116

    Google Scholar 

  • Dowd D, MacDonald P, Komm B, Haussler M, Miesfeld R (1992): Stable expression of the calbindin-D28K complementary DNA interferes with the apoptotic pathway in lymphocytes. Mol Endocrinol 6: 1843–1848

    PubMed  CAS  Google Scholar 

  • Eastman-Reks S, Vedeckis W (1986): Glucocorticoid inhibition of c-myc, c-myb, and c-Ki-ras expression in a mouse lymphoma cell line. Cancer Res 46: 2457–2462

    PubMed  CAS  Google Scholar 

  • Elliot E, Mattson M, Vanderklish P, Lynch G, Chang I, Sapolsky R (1993): Corticosterone exacerbates kainate-induced alterations in hippocampal tau immunoreactivity and spectrin proteolysis in vivo. J Neurochem 61: 57–67

    Google Scholar 

  • Ellis R, Yuan J, Horvitz H (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7: 663–698

    PubMed  CAS  Google Scholar 

  • Evers B, Thompson E, Townsend C, Lawrence J, Johnson B, Srinivasan G, Thompson J (1993): Cortivazol increases glucocorticoid receptor expression and inhibits growth of hamster pancreatic cancer (H2T) in vivo. Pancreas 8: 7–14

    PubMed  CAS  Google Scholar 

  • Fesus L, Thomaszy V, Autuori F, Ceru M, Tarcsa E, Piacenti M (1989): Apoptotic hepatocytes become insoluble in detergents and chaotropic agents as a result of transglutaminase action. FEBS Lett 245: 150–154

    PubMed  CAS  Google Scholar 

  • Fesus L, Thomaszy V, Falus A (1987): Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett 224: 104–108

    PubMed  CAS  Google Scholar 

  • Filipski J, Leblanc J, Youdale T, Sikorska M, Walker P (1990): Periodicity of DNA folding in higher order chromatin structures. EM BO J 9: 1319–1327

    CAS  Google Scholar 

  • Fomima A, Kostyuk P, Sedova M (1993): Glucocorticoid modulation of calcium currents in growth hormone 3 cells. Neuroscience 55: 721–725

    Google Scholar 

  • Forsthoefel A, Thompson E (1987): Glucocorticoid regulation of transcription of the c-myc cellular protooncogene in PI798 cells. Mol Endocrinol 1: 899–907

    PubMed  CAS  Google Scholar 

  • Fox J, Austin C, Reynolds C, Steffen P (1991): Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicle from the membrane of aggregating platelets. J Biol Chem 266: 13289–13295

    PubMed  CAS  Google Scholar 

  • Fox J, Austin C, Boyles J, Steffen P (1990): Role of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane. J Cell Biol 111: 483–493

    PubMed  CAS  Google Scholar 

  • Gagliardini V, Fernandez P-A, Lee R, Drexler H, Rotello R, Fishman M, Yuan J (1994): Prevention of vertebrate neuronal death by the crmA gene. Science 263: 826–828

    PubMed  CAS  Google Scholar 

  • Gaido M, Cidlowski J (1991): Identification, purification, and characterization of a calcium-dependent endonuclease (NUC18) from apoptotic rat thymocytes. J Biol Chem 266: 18580–18585

    PubMed  CAS  Google Scholar 

  • Galili U (1983): Glucocorticoid induced cytolysis of human normal and malignant lymphocytes. J Steroid Biochem 19: 483–490

    PubMed  CAS  Google Scholar 

  • Going J, Anderson T, Wyllie A (1992): Ras p21 in breast tissue: association with pathology and cellular localization. Br J Cane 65: 45–50

    CAS  Google Scholar 

  • Gruber J, Sgonc R, Hu Y-H, Beug J, Wick G (1994): Thymoctye apoptosis induced by elevated endogenous corticosterone levels. Eur J Immunol 24: 1115–1121

    PubMed  CAS  Google Scholar 

  • Harrigan M, Baughman G, Campbell N, Bourgeois S (1989): Isolation and characterization of glucocorticoid- and cyclic AMP-induced genes in T lymphocytes. Mol Cell Biol 9: 3438–3446

    PubMed  CAS  Google Scholar 

  • Heilman R, Kendall E (1944): The influence of 11-dehydro-17-hydroxycorticosterone (compound E) on the growth of malignant tumor in the mouse. Endocrinology 34: 416–420

    CAS  Google Scholar 

  • Helgason C, Shi L, Greenberg A, Shi Y, Bromley P, Cotter T, Green D, Bleackely R (1993): DNA fragmentation induced by cytotoxic T lymphocytes can result in target cell death. Exp Cell Res 206: 302–310

    PubMed  CAS  Google Scholar 

  • Hengartner M, Ellis R, Horvitz R (1992): Caenorhabiditis elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494–499

    PubMed  CAS  Google Scholar 

  • Hengartner M, Horvitz R (1994): C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76:665– 676

    Google Scholar 

  • Hickman J (1992): Apoptosis induced by anticancer drugs. Cancer Metast Rev 11: 121–139

    CAS  Google Scholar 

  • Hockenberry D, Oltvai Z, Yin X-M, Milliman C, Korsmeyer S (1993): Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251

    Google Scholar 

  • Hogquist K, Nett M, Unanue E, Chaplin D (1991): Interleukin 1 is processed and released during apoptosis. Proc Natl Acad Sci USA 88: 8485–8489

    PubMed  CAS  Google Scholar 

  • Iseki R, Kudo Y, Iwata M (1993): Early mobilization of Ca2+ is not required for glucocorticoid-induced apoptosis in thymocytes. J Immunol 151: 5198–5207

    PubMed  CAS  Google Scholar 

  • Jones D, McConkey D, Nicotera P, Orrenius S (1989): Calcium-activated DNA fragmentation in rat liver nuclei. J Biol Chem 264: 6398–6403

    PubMed  CAS  Google Scholar 

  • Kaiser N, Edelman I (1977): Calcium dependence of glucocorticoid-induced lymphocytolysis. Proc Natl Acad Sci USA 74: 638–642

    PubMed  CAS  Google Scholar 

  • Kane D, Sarafian T, Anton R, Hahn H, Gralla E, Valentine J, Ord T, Bredesen D (1993): Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262: 1274–1277

    PubMed  CAS  Google Scholar 

  • Kato H, Hayashi T, Koshino Y, Kutsumi Y, Nakai T, Miyabo S (1992): Glucocorticoids increase Ca2+ influx through dihydropyridine-sensitive channels linked to activation of protein kinase C in vascular smooth muscle cells. Biochem Biophys Res Comm 188: 934–941

    PubMed  CAS  Google Scholar 

  • Kerr J, Wyllie A, Currie A (1972): Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257

    PubMed  CAS  Google Scholar 

  • Kerr J, Winterford C, Harmon B (1994): Apoptosis: its significance in cancer and cancer therapy. Cancer 73: 2013–2026

    PubMed  CAS  Google Scholar 

  • Koeffler P, Golde D (1981): Chronic myelogenous leukemia—new concepts. N Engl J Med 304:1201–12??

    Google Scholar 

  • Kornel L, Nelson W, Manisundaram B, Chigurupati R, Hayashi T (1993): Mechanism of the effects of glucocorticoids and mineralocorticoids on vascular smooth muscle contractility. Steroids 58: 580–587

    PubMed  CAS  Google Scholar 

  • Lam M, Dubyak G, Distelhorst C (1993): Effect of glucocorticosteroid treatment on intracellular calcium homeostasis in mouse lymphoma cells. Mol Endocrinol 7: 686–693

    PubMed  CAS  Google Scholar 

  • Lynn W, Mathews D, Cloyd M, Wallwork J, Thompson A, Sachs CJ (1989): Intracellular Ca2+ and cytotoxicity. Arch Emir Health 44: 323–330

    CAS  Google Scholar 

  • MacDonald R, Martin T, Cidlowski J (1980): Glucocorticoids stimulate protein degradation in lymphocytes: A possible mechanism of steroid-induced cell death. Endocrinology 107: 1512–1524

    PubMed  CAS  Google Scholar 

  • MacDonald R, Cidlowski J (1981): Glucocorticoid regulation of two serine hydrolases in rat splenic lymphocytes in vitro. Bioc Biop Acta 678: 18–26

    CAS  Google Scholar 

  • MacDonald R, Cidlowski J (1982): Glucocorticoids inhibit precursor incorporation into protein in splenic lymphocytes by stimulating protein degradation and expanding intracellular amino acid pools. Bioc Biop Acta 717: 236–247

    CAS  Google Scholar 

  • Makman M, Dvorkin B, White A (1968): Influences of Cortisol on the utilization of precursors of nucleic acids and protein by lymphoid cells in vitro. J Biol Chem 243: 1485–1497

    PubMed  CAS  Google Scholar 

  • Makman M, Dvorkin B, White A (1971): Evidence for induction by Cortisol in vitro of a protein inhibitor of transport and phosphorylation processes in rat thymocytes. Proc Natl Acad Sci USA 68: 1269–1273

    PubMed  CAS  Google Scholar 

  • Marx J (1993): Cell death studies yield cancer clues. Science 259: 760–761

    PubMed  CAS  Google Scholar 

  • Mashburn B, Freeman C, Hollander V (1969): Effect of in vitro glucocorticoid treatment on acid ribonuclease activity in PI798 lymphosarcoma cells. Proc Soc Exp Biol Bed 131: 108–111

    CAS  Google Scholar 

  • McConkey D, Aguilar-Santelises M, Hartzell P, Eriksson I, Mellstedt H, Orrenius S, Jondal M (1991): Induction of DNA fragmentation in chronic B-lymphocytic leukemia cells. J Immunol 146: 1072–1076

    PubMed  CAS  Google Scholar 

  • McConkey D, Hatzell P, Nicotera P, Orrenius S (1989a): Calcium-activated DNA fragmentation kills immature thymocytes. FASEB J 3: 1843–1849

    PubMed  CAS  Google Scholar 

  • McConkey D, Nicotera P, Hartzell P, Bellomo G, Wyllie A, Orrenius S (1989b): Glucocorticoids activate a suicide process in thymocytes through an elevation of cytosolic Ca2+ concentration. Arch Biochem Biophys 269: 365–370

    PubMed  CAS  Google Scholar 

  • McConkey D, Hartzell P, Duddy S, Hakansson H, Orrenius S (1988): 2,3,7,8-Tetra- chlorodibenzo-p-dioxin kills immature thymocytes by Ca2+-mediated endonuclease activation. Science 242: 256–259

    Google Scholar 

  • McGahon A, Cotter T, Green D (1994): The abl oncogene family and apoptosis. Cell Death Diff 1: 77–83

    CAS  Google Scholar 

  • Miyashita T, Reed J (1992): bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res 52: 5407–5411

    Google Scholar 

  • Montague J, Cidlowski J (1995): Glucocorticoid-induced death of immune cells: mechanisms of action. Curr Top Microbiol Immunol 200: 51–65

    PubMed  CAS  Google Scholar 

  • Morita Y, Munck A (1964): Effects of glucocorticoids in vivo and in vitro on net glucose uptake and amino acid incorporation in rat thymus cells. Biochem Biophys Acta 93: 150–157

    PubMed  CAS  Google Scholar 

  • Munck A, Leung K (1977) Glucocorticoid receptors and mechanisms of action. In: Receptors and mechanisms of action of steroid hormones, J Pasqualini, eds. New York: Marcel Decker, Inc Nett M, Cerretti D, Berson D, Seavitt F, Gilbert D, Jenkins N, Copeland N, Black R, Chaplin D (1992): Molecular cloning of the murine IL-1 beta converting enzyme cDNA. J Immunol 149: 3254–3259

    Google Scholar 

  • Nicholson M, Young D (1979): Independence of the lethal actions of glucocorticoids on lymphoid cells from possible hormone effects of calcium uptake. J Supramol Struct 10: 165–174

    PubMed  CAS  Google Scholar 

  • Nicotera P, Hartzell P, Davis G, Orrenius S (1986): The formation of plasma membrane blebs in hepatocytes exposed to agents that increase cytosolic Ca++ is mediated by the activation of a non-lysosomal proteolytic system. FEBS Lett 209: 139–144

    PubMed  CAS  Google Scholar 

  • Nieto M, Gonzalez A, Gambon F, Diaz-Espada F, Lopez-Rivas A (1992): Apoptosis in human thymocytes after treatment with glucocorticoids. Clin Exp Immunol 88: 341–344

    PubMed  CAS  Google Scholar 

  • Nordeen S, Young D (1976): Glucocorticoid action on rat thymic lymphocytes: experiments utilizing adenosine to support cellular metabolism lead to a reassessment of catabolic hormone action. J Biol Chem 251: 7295–7303

    PubMed  CAS  Google Scholar 

  • Oberhammer F, Wilson J, Dive C, Morris I, Hickman J, Wakeling A, Walker P, Sikorska M (1993): Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 500 kb fragments prior to or in the absence of internucleosomal fragmentation. EM BO J 12: 3679–3684

    CAS  Google Scholar 

  • Oren M (1992): The involvement of oncogenes and tumor suppressor genes in the control of apoptosis. Cancer Metast Rev 11: 141–148

    CAS  Google Scholar 

  • Orrenius S, McCabe MJ, Nicotera P (1992): Ca2+-dependent mechanisms of cytotoxicity and programmed cell death. Toxic Lett 64 /65: 357–364

    Google Scholar 

  • Owens G, Cohen J (1992): Identification of genes involved in programmed cell death. Cancer Metast Rev 11: 149–156

    CAS  Google Scholar 

  • Owens G, Hahn W, Cohen J (1991): Identification of mRNAs associated with programmed cell death in immature thymocytes. Mol Cell Biol 11: 4177–4188

    PubMed  CAS  Google Scholar 

  • Peitsch M, Polzar B, Stephan H, Crompton L, MacDonald H (1993): Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EM BO J 12: 371–377

    CAS  Google Scholar 

  • Polliack A (1991): A Handbook of Essential Drugs and Regimens in Hematological Oncology. Switzerland: Harvad Academic Publishers Ringold G (1985): Steroid hormone regulation of gene expression. Annu Rev Pharmacol Tox 25: 529–566

    Google Scholar 

  • Sarin A, Adams D, Henkart P (1993): Protease inhibitors selectively block T cell receptor-triggered programmed cell death in a murine T cell hybridoma and activated peripheral T cells. J Exp Med 178: 1693–1700

    PubMed  CAS  Google Scholar 

  • Schrek R (1961): Cytotoxicity of adrenal cortex hormones on normal and malignant lymphocytes of man and rat. Proc Soc Exp Biol Med 108: 328–332

    PubMed  CAS  Google Scholar 

  • Schrek R (1964): Prednisolone sensitivity and cytology of viable lymphocytes as tests for chronic lymphocytic leukemia. J Natl Cancer Inst 33: 837–847

    PubMed  CAS  Google Scholar 

  • Schulte-Hermann R, Timmermen-Trosiener I, Barthel G, Bursch W (1990): DNA synthesis, apoptosis and phenotypic expression as determinants of growth of altered foci in rat liver during phenobarbital production. Cancer Rsch 50: 5127–5135

    CAS  Google Scholar 

  • Schwartzman R, Cidlowski J (1993): Apoptosis: The biochemistry and molecular biology of programmed cell death. Endocr Rev 14: 133–151

    PubMed  CAS  Google Scholar 

  • Sentman C, Shutter J, Hockenberry D, Kanagawa O, Korsmeyer S (1991): bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67: 879–888

    Google Scholar 

  • Shaw P, Bovey R, Tardy S, Sahli R, Sordat B, Costa J (1992): Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci USA 89: 4495–4499

    PubMed  CAS  Google Scholar 

  • Shi L, Kam C-M, Powers J, Aebersold R, Greenberg A (1992): Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interaction. J Exp Med 176: 1521–1529

    PubMed  CAS  Google Scholar 

  • Shi L, Nishioka W, Th’ng J, Bradbury E, Litchfield D, Greenberg A (1994): Premature p34cdc2 activation required for apoptosis. Science 263: 1143–1145

    PubMed  CAS  Google Scholar 

  • Smyth M, Browne K, Thia K, Apostolidis V, Kershaw M, Trapani J (1994): Hypothesis: Cytotoxic lymphocyte granule serine proteases activate target cell endonucleases to trigger apoptosis. Clin Exp Pharm Phys 21: 67–70

    CAS  Google Scholar 

  • Sorensen P, Helweg-Larsen S, Mouridsen H, Hansen H (1994): Effect of high-dose dexamethasone in carcinamatous metastatic spinal cord compression treated with radiotherapy: a randomized trial. Eur J Cancer 30A: 22–27

    Google Scholar 

  • Squier M, Miller A, Malkinson A, Cohen J (1994): Calpain activation in apoptosis. J Cell Physiol 159: 229–237

    PubMed  CAS  Google Scholar 

  • Sun X-M, Cohen G (1994): Mg2+-dependent cleavage of DNA into kilobase pair fragments is responsible for the initial degradation of DNA in apoptosis. J Biol Chem 269: 14857–14860

    PubMed  CAS  Google Scholar 

  • Tarcsa E, Kedei N, Thomazsy V, Fesus L (1992): An involucrin-like protein in hepatocytes serves as a substrate for tissue transglutaminase during apoptosis. J Biol Chem 267: 25648–25651

    CAS  Google Scholar 

  • Tuosto L, Cundari E, Montani M, Piccolella E (1994): Analysis of susceptibility of mature human T lymphocytes to dexamethasone-induced apoptosis. Eur J Immunol 24: 1061–1065

    PubMed  CAS  Google Scholar 

  • Valera S, Hussy N, Evans R, Adami N, North R, Surprenant A, Buell G (1994): A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 371: 516–519

    PubMed  CAS  Google Scholar 

  • Vanderbilt J, Bloom K, Anderson J (1982): Endogenous nuclease: properties and

    Google Scholar 

  • effects on transcribed genes in chromatin. J Biol Chem 257:13009–13017

    Google Scholar 

  • Weissman D (1988): Glucocorticoid treatment for brain metastases and epidural spinal cord compression: a review. J Clin Oncol 6: 543–555

    PubMed  CAS  Google Scholar 

  • Wiernik P, MacLeod R (1965): The effect of a single large dose of 9a-fluoropred- nisolone on nucleodepolymerase activity and nucleic acid content of the rat thymus. Acta Endocrinol 49: 138–144

    PubMed  CAS  Google Scholar 

  • Williams G (1991): Programmed cell death: apoptosis and oncogenesis. Cell 65: 1097–1098

    PubMed  CAS  Google Scholar 

  • Williams A, Piris J, Spandidos A, Wyllie A (1985): Immunohistochemical detection of the ras oncogene p21 product in an experimental tumour and in human colorectal neoplasms. Br J Cane 52: 687–693

    CAS  Google Scholar 

  • Wyllie A, Morris R, Smith A, Dunlop D (1984): Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macro- molecular synthesis. J Pathol 142: 67–77

    PubMed  CAS  Google Scholar 

  • Wyllie A (1980): Glucocorticoid-induced thymocyte apoptosis is associated with endogenous nuclease activation. Nature 284: 555–556

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Alberts B (1976): Steroid receptors: elements for modulation of eukaryotic transcription. Annu Rev Biochem 45: 721–746

    PubMed  CAS  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991): Wild- type p53 induces apoptosis of myeloid leukemic cells that is inhibited by inter- leukin-6. Nature 352: 345–347

    PubMed  CAS  Google Scholar 

  • Yuh Y-S, Thompson E (1989): Glucocorticoid effect on oncogene/growth gene expression in human T lymphoblastic leukemic cell line CCRF-CEM. J Biol Chem 264: 10904–10910

    PubMed  CAS  Google Scholar 

  • Zhivotovsky B, Wade D, Gahm A, Orrenius S, Nicotera P (1994): Formation of 50 kbp chromatin fragments in isolated liver nuclei is mediated by protease and endonuclease activation. FEBS Lett 351: 150–154

    PubMed  CAS  Google Scholar 

  • Zhivotovsky B, Cedervall B, Jiang S, Nicotera P, Orrenius S (1994): Involvement of Ca2+ in the formation of high molecular weight DNA fragments in thymocyte apoptosis. Biochem Biophys Res Commun 202: 120–127

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Montague, J.W., Cidlowski, J.A. (1996). Glucocorticoid Actions on Normal and Neoplastic Lymphocytes: Activation of Apoptosis. In: Vedeckis, W.V. (eds) Hormones and Cancer. Hormones in Health and Disease. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4266-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4266-6_18

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8715-5

  • Online ISBN: 978-1-4612-4266-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics