Advertisement

The Cohomology of Algebras Over Moduli Spaces

  • Takashi Kimura
  • Alexander A. Voronov
Part of the Progress in Mathematics book series (PM, volume 129)

Abstract

The purpose of this paper is to introduce the cohomology of various algebras over an operad of moduli spaces including the cohomology of conformal field theories (CFT’s) and vertex operator algebras (VOA’s). This cohomology theory produces a number of invariants of CFT’s and VOA’s, one of which is the space of their infinitesimal deformations.

Keywords

Modulus Space Associative Algebra Homotopy Class Conformal Field Theory Riemann Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deligne, P.: Letter to J. Millson and W. Goldman, April 24, 1986.Google Scholar
  2. 2.
    Deligne, P.: Letter to H. Ésnault, 1992.Google Scholar
  3. 3.
    Dijkgraaf, R.: A geometrical approach to conformal field theory. PhD thesisGoogle Scholar
  4. 4.
    Dijkgraaf, R., Verlinde, E., and Verlinde, H.: c = 1 conformal field theories on Riemann surfaces. Commun. Math. Phys. 115, 649 (1988) 649MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Drinfel’d, V. G.: Letter to V. Schechtman, September 18, 1988.Google Scholar
  6. 6.
    Flato, M., Gerstenhaber, M., and Voronov, A. A.: Cohomology and deformations of Leibniz pairs. In preparationGoogle Scholar
  7. 7.
    Gerstenhaber, M., Voronov, A. A.: Homotopy G-algebras and moduli space operad. Preprint MPI/94–71, Max-Planck-Institut in Bonn 1994, hep-th/9409063Google Scholar
  8. 8.
    Getzler, E.: Batalin-Vilkovisky algebras and two-dimensional topological field theories. Commun. Math. Phys. 159, 265–285 (1994), hep-th/9212043Google Scholar
  9. 9.
    Getzler, E., Kapranov, M. M.: Cyclic operads and cyclic homology. Preprint. MSRI 1993Google Scholar
  10. 10.
    Ginzburg, V., Kapranov, M. M.: Koszul duality for operads. Preprint. Northwestern University 1993Google Scholar
  11. 11.
    Goldman, W., Millson, J.: The deformation theory of representations of π i of a Kähler manifold. Publ. Math. I.H.E.S. 68, 43–96 (1988)Google Scholar
  12. 12.
    Huang, Y.-Z.: Operadic formulation of topological vertex algebras and Gerstenhaber or Batalin-Vilkovisky algebras. Commun. Math. Phys. 164, 105–144 (1994), hepth/9306021Google Scholar
  13. 13.
    Huang, Y.-Z., Lepowsky, J.: Vertex operator algebras and operads, The Gelfand mathematical seminars, 1990-1992, Birkhauser, Boston, 1993, pp. 145–161, hepth/9301009.Google Scholar
  14. 14.
    T. Kimura, Operads of Moduli Spaces and Algebraic Structures in Conformal Field Theory, Preprint, University of North Carolina. November 1994.Google Scholar
  15. 15.
    T. Kimura, J. Stasheff, and A. A. Voronov, On operad structures of moduli spaces and string theory, Preprint 936, RIMS, Kyoto University, Kyoto, Japan, July 1993, hepth/9307114. Commun. Math. Phys. (to appear)Google Scholar
  16. 16.
    T. Kimura, J. Stasheff, and A. A. Voronov, Commutative homotopy algebra of topological gravity, Preprint, University of Pennsylvania and University of North Carolina. September 1994.Google Scholar
  17. 17.
    M. Kontsevich, Formal (non)-commutative symplectic geometry, The Gelfand mathematical seminars, 1990-1992 (L. Corwin, I. Gelfand, and J. Lepowsky, eds.), Birkhauser, 1993, pp. 173–187.Google Scholar
  18. 18.
    M. Kontsevich, Lectures on deformation theory. Berkeley, Fall 1994Google Scholar
  19. 19.
    M. Kontsevich, Yu. I. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Preprint MPI/93, Max-Planck-Institut für Mathematik, Bonn, February 1994, hep-th/9402147.Google Scholar
  20. 20.
    Lian, B. H., Zuckerman, G. J.: New perspectives on the BRST-algebraic structure of string theory. Commun. Math. Phys. 154, 613–646 (1993), hep-th/9211072Google Scholar
  21. 21.
    Markl, M., Shnider, S.: Drinfe’d algebra deformations and the associahedra. Internal Math. Research Notices 4 169–176 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    May, J.P.: The geometry of iterated loop spaces. Lecture Notes in Math., vol. 271. Berlin, Heidelberg, New York: Springer-Verlag 1972Google Scholar
  23. 23.
    Ranganathan, K., Sonoda, H., and Zwiebach, B.: Connections on the state-space over conformal field theories. Preprint MIT-CTP-2193, MIT, April 1993, hep- th/9304053Google Scholar
  24. 24.
    Schlessinger, M., Stasheff, J.: Deformations and rational homotopy theory. Preprint, University of North Carolina, 1979Google Scholar
  25. 25.
    Segal, G.: The definition of conformal field theory. Preprint. OxfordGoogle Scholar
  26. 26.
    Stasheff, J.: The intrinsic bracket on the deformation complex of an associative algebra. J. Pure Appl. Algebra 89 231–235 (1993)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Witten, E., Zwiebach, B.: Algebraic structures and differential geometry in two- dimensional string theory. Nucl. Phys. B 377, 55–112 (1992)MathSciNetCrossRefGoogle Scholar
  28. 28.
    B. Zwiebach, Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation, Nucl. Phys. B 390 (1993), 33–152.Google Scholar

Copyright information

© Birkhäuser Boston 1995

Authors and Affiliations

  • Takashi Kimura
    • 1
  • Alexander A. Voronov
    • 2
  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA
  2. 2.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations