Geometry of determinants of elliptic operators

  • Maxim Kontsevich
  • Simeon Vishik
Part of the Progress in Mathematics book series (PM, volume 131)


D.B. Ray and I.M. Singer invented zeta-regularized determinants for positive definite elliptic pseudo-differential operators (PDOs) of positive orders acting in the space of smooth sections of a finite-dimensional vector bundle E over a closed finite-dimensional manifold M ([RS1], [RS2]).


Elliptic Operator Central Extension Symmetric Bilinear Form Principal Symbol Fredholm Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [APS]
    Atiyah, M.F., Patodi, V.K., Singer, I.M., Spectral asymmetry and Riemannian geometry, I. Math. Proc. Cambridge Phil. Soc. (1975) 77, 43–69MathSciNetCrossRefMATHGoogle Scholar
  2. [Fr]
    Friedlander, L., Ph.D Thesis, Dept. Math. MIT, 1989Google Scholar
  3. [Hö]
    Hörmander, L., The analysis of linear partial differential operators, I. Grundl. math. Wiss. 256, Springer-Verlag: Berlin, Heidelberg, 1983Google Scholar
  4. [Kas]
    Kassel, C., Le residue non commutatif (d’apres M. Wodzicki). Semin. Bourbaki, 41eme ann. 1988–89, Exp. 708 (1989)Google Scholar
  5. [KV]
    Kontsevich, M., Vishik, S., Determinants of elliptic pseudo- differential operators, preprint Max-Planck-Institut fur Mathematik 1994, MPI/94-30, 156 pp. (Submitted to GAFA)Google Scholar
  6. [KrKh]
    Kravchenko, O.S., Khesin, B.A., Central extension of the Lie algebra of (pseudo-) differential symbols, Funct. Anal, and its Appl 25: 2 (1991), 83–85MathSciNetGoogle Scholar
  7. [Li]
    Lidskii, V.B., Nonselfadjoint operators with a trace, Dokl. Akad. Nauk SSSR 125 (1959), 485–487MathSciNetGoogle Scholar
  8. [R]
    Radul, A.O., Lie algebras of differential operators, their central extensions, and W-algebras, Funct. Anal. 25: 1 (1991), 33–49MathSciNetGoogle Scholar
  9. [RSI]
    Ray, D.B., Singer, I.M., R-torsion and the Laplacian on Riemannian manifolds, Adv. in Math. 7 (1971), 145–210MathSciNetCrossRefMATHGoogle Scholar
  10. [RS2]
    Ray, D.B., Singer, I.M., Analytic torsion for complex manifolds. Ann. Math. 98(1973), 154–177Google Scholar
  11. [Re]
    Retherford, J.R., Hilbert space: Compact operators and the trace theorem, London Math. Soc. Student Texts 27, Cambridge Univ. Press, 1993Google Scholar
  12. [Sch]
    Schwarz, A.S., The partition function of a degenerate functional, Commun. Math. Phys. 67 (1979), 1–16CrossRefMATHGoogle Scholar
  13. [Wol]
    Wodzicki, M., Local invariants of spectral asymmetry, Invent. Math. 75 (1984), 143–178MathSciNetCrossRefMATHGoogle Scholar
  14. [Wo2]
    Wodzicki, M., “Noncommutative residue. Chap. I. Fundamentals”, In: K-theory, arithmetic and geometry, Lect. Notes Math. 1289 (1987), Springer-Verlag: Heidelberg, New York, 320–399Google Scholar

Copyright information

© Birkhäuser Boston 1995

Authors and Affiliations

  • Maxim Kontsevich
    • 1
    • 2
  • Simeon Vishik
    • 1
    • 3
  1. 1.Max-Planck-Institut für MathematikBonnGermany
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  3. 3.Department of Mathematics 038-16Temple UniversityPhiladelphiaUSA

Personalised recommendations