Skip to main content

Phase Change

  • Chapter

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

In this chapter we examine evaporation and condensation in porous media in detail and briefly review melting and solidification in porous media. The heat supply or removal causing these to occur is generally through the bounding surfaces and these surfaces can be impermeable or permeable. We begin by considering condensation and evaporation adjacent to vertical impermeable surfaces. These are the counterparts of the film condensation and evaporation in plain media. The presence of the solid matrix results in the occurrence of a two-phase flow region governed by gravity and capillarity. The study of this two-phase flow and its effect on the condensation or evaporation rate (i.e., the heat transfer rate) has begun recently. Evaporation from horizontal impermeable surfaces is considered next. Because the evaporation is mostly from thin-liquid films forming on the solid matrix (in the evaporation zone), the evaporation does not require a significant superheat. The onset of dryout, i.e., the failure of the gravity and capillarity to keep the surface wet, occurs at a critical heat flux but only small superheat is required. We examine the predictions of the critical heat flux and the treatment of the vapor-film and the two-phase regions. We also examine the case of thin porous-layer coating of horizontal surfaces and review the limited data on the porous-layer thickness dependence of the heat flow rate versus the superheat curve.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afgan, N. M., Jovic, L. A., Kovalev, S. A., and Lenykov, V. A., 1985, “Boiling Heat Transfer from Surfaces with Porous Layers,” Int. J. Heat Mass Transfer, 28, 415–422.

    Article  Google Scholar 

  • Ahuja, S., Beckermann, C., Zakhem, R., Weidman, P.D., and de Groh III, U.C., 1992, “Drag Coefficient of an Equiaxed Dendrite Settling in an Infinite Medium,” Beckermann, C., etal., Editors, ASME HTD-Vol. 218, 85–91, American Society of Mechanical Engineers, New York.

    Google Scholar 

  • Basel, M. D. and Udell, K. S., 1989, “Two-Dimensional Study of Steam Injection into Porous Media,” in Multiphase ’Transport in Porous Media-1989, ASME HTD-Vol. 127 (FED-Vol. 82 ), 39–46.

    Google Scholar 

  • Bau, H. H. and Torrance, K. E., 1982, “Boiling in Low-Permeability Porous Materials,” Int. J. Heat Mass Transfer, 25, 45–55.

    Article  Google Scholar 

  • Beckermann, C. and Ni, J., 1992, “Modeling of Equiaxed Solidification with Convection,” in Proceedings, First International Conference on Transport Phenomena in Processing, Güceri, S.J., Editor, 308–317, Technomic, Lancaster, PA.

    Google Scholar 

  • Beckermann. C. and Viskanta, R., 1993, “Mathematical Modeling of Transport Phenomena During Alloy Solidification,” Appl. Mech. Rev., 46, 1–27.

    Article  MathSciNet  ADS  Google Scholar 

  • Bennon, W. D. and Incropera, F. P., 1987, “A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems-I., and -II.” Int. J. Heat Mass Transfer, 30, 2161–2187.

    Article  MATH  Google Scholar 

  • Bergles, A. E. and Chyu, M. C., “Characteristics of Nucleate Pool Boiling from Porous Metallic Coatings,” ASME J. Heat Transfer, 104, 279–285.

    Google Scholar 

  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, Wiley.

    Google Scholar 

  • Cheng, P., 1981, “Film Condensation Along an Inclined Surface in a Porous Medium,” Int. J. Heat Mass Transfer, 24, 983–990.

    Article  MATH  Google Scholar 

  • Chung, J. N., Plumb, O. A., and Lee, W. C., 1990, “Condensation in a Porous Region Bounded by a Cold Vertical Surface,” in Heat and Mass Transfer in Frost, Ice, Packed Beds, and Environmental Discharge, ASME HTD-Vol. 139, 43–50.

    Google Scholar 

  • Dash, S. K. and Gill, N. M., 1984, “Forced Convection Heat and Momentum Transfer to Dendritic Structures (Parabolic Cylinder and Paraboloids of Rev- olution),” Int. J. Heat Mass Transfer, 27, 1345–1356.

    Article  MATH  Google Scholar 

  • Eckert, E. R. G., Goldstein, R. J.. Behbahani, A. I., and Hain, R., 1985, “Boiling in an Unconsolidated Granular Medium,” Int. J. Heat Mass Transfer, 28, 1187–1196.

    Article  Google Scholar 

  • Fand, R. M., Zheng, T., and Cheng, P., 1987, “The General Characteristics of Boiling Heat Transfer from a Surface Embedded in a Porous Medium,” Int. J. Heat Mass Transfer, 30, 1231–1235.

    Article  Google Scholar 

  • Fukusako, S., Komoriga, T., and Seki, N. 1986, “An Experimental Study of Transition and Film Boiling Heat Transfer in Liquid-Saturated Porous Bed,” ASME J. Heat Transfer, 108, 117–124.

    Article  Google Scholar 

  • Ganesan, S. and Poiricr, D. R., 1990, “Conservation of Mass and Momentum for the Flow of Interdendritic Liquid During Solidification,” Metall. Trans., 21B, 173–181.

    Article  Google Scholar 

  • Hanamura. K. and Kaviany, M., 1995, “Propagation of Condensation Front in Steam Injection into Dry Porous Media,” Int. J. Heat Mass Transfer, 38, 1377–1386.

    Article  Google Scholar 

  • Hills, R. N., Loper, D. E., and Roberts, P. H., 1992, “On Continuum Models for Momentum, Heat and Species Transport in Solid-Liquid Phase Change Systems,” Int. Comm. Heat Mass Transfer, 19, 585–594.

    Article  Google Scholar 

  • Hills, R. N. and Roberts, P.H., 1993, “A Note on the Kinetic Conditions at a Supercooled Interface,” Int. Comm. Heat Mass Transfer, 20, 407–416.

    Article  Google Scholar 

  • Hupport, H. E., 1990, “The Fluid Mechanics of Solidification,” J. Fluid Mech., 212, 209–240.

    Article  MathSciNet  ADS  Google Scholar 

  • Ilic, M. and Turner, I. W., 1989, “Convective Drying of a Consolidated Slab of Wet Porous Material,” Int. J. Heat Mass Transfer, 32, 2351–2362.

    Article  MATH  Google Scholar 

  • Jennings, J. D. and Udell, K. S., 1985, “The Heat Pipe Effect in Heterogeneous Porous Media,” in Heat Transfer in Porous Media and Particulate Flows, ASME HTD-Vol. 46, 93–101.

    Google Scholar 

  • Jones, P. L-, Lawton, J., and Parker, I. M., 1974, “High Frequency Paper Drying: Part I—Paper Drying in Radio and Microwave Frequency Fields,” Trans. Instn. Chem. Engrs., 52, 121–131.

    Google Scholar 

  • Jones, S. W., Epstein, M., Gabor, J. D., Cassulo, J. D., and Bankoff, S. G., 1980, “Investigation of Limiting Boiling Heat Fluxes from Debris Beds,” Trans. Amer. Nucl. Soc., 35, 361–363.

    Google Scholar 

  • Kaviany, M., 1986, “Boundary-Layer Treatment of Film Condensation in the Presence of a Solid Matrix,” Int. J. Heat Mass Transfer, 29, 951–954.

    Article  Google Scholar 

  • Kaviany, M. and Mittal, M., 1987, “Funicular State in Drying of a Porous Slab,” Int. J. Heat Mass Transfer, 30, 1407–1418.

    Article  MATH  Google Scholar 

  • Kaviany, M., 1994, Principles of Convective Heat Transfer, Springer-Verlag, New York.

    Google Scholar 

  • Kim, C.-J. and Kaviany, M., 1992, “A Fully Implicit Method for Diffusion- Controlled Solidification of Binary Alloys,” Int. J. Heat Mass Transfer, 35, 1143–1154.

    Article  MATH  Google Scholar 

  • Konev, S. K., Plasek, F., and Horvat, L., 1987, “Investigation of Boiling in Capillary Structures,” Heat Transfer—Soviet Res., 19, 14–17.

    Google Scholar 

  • Kovalev, S. A., Solv’yev, S. L., and Ovodkov, O. A., 1987, “Liquid Boiling on Porous Surfaces,” Heat Transfer—Soviet Res., 19, 109–120.

    Google Scholar 

  • Kurz, W. and Fisher, D. J., 1992, Fundamentals of Solidifcation, Third Edition, Trans Tech Publications, Switzerland.

    Google Scholar 

  • Luikov, A. V., 1966, Heat and Mass Transfer in Capillary Porous Bodies, Pergamon (original Russian version, 1961 ).

    Google Scholar 

  • Majumdar, A. and Tien, C.-L., 1988, “Effects of Surface Tension on Films Condensation in a Porous Medium,” ASME J. Heat Transfer, 112, 751–757.

    Article  Google Scholar 

  • Menegus, D. K. and Udell, K. S., 1985, “A Study of Steam Injection into Water Saturated Capillary Porous Media,” in Heat Transfer in Porous Media and Particulate Flows, ASME HTD-Vol. 46, 151–157.

    Google Scholar 

  • Miller, C. A., 1975, “Stability of Moving Surfaces in Fluid Systems with Heat and Mass Transport, III: Stability of Displacement Fronts in Porous Media,” AIChE J., 21, 474–479.

    Google Scholar 

  • Naik, A. S. and Dhir, V. K., 1982, “Forced Flow Evaporative Cooling of a Volumetrically Heated Porous Layer,” Int. J. Heat Mass Transfer, 25, 541–552.

    Article  Google Scholar 

  • Parmentier, E. M., 1979, “Two-Phase Natural Convection Adjacent to a Vertical Heated Surface in a Permeable Medium,” Int. J. Heat Mass Transfer, 22, 849–855.

    Article  ADS  Google Scholar 

  • Plumb, O. A., Burnett, D.B., and Shekarriz, A., 1990, “Film Condensation on a Vertical Flat Plate in a Packed Bed,” ASME J. Heat Transfer, 112, 235–239.

    Article  Google Scholar 

  • Plumb, O. A., Spolek, G. A., and Olmstead, B. A., 1985, “Heat and Mass Transfer in Wood During Drying,” Int. J. Heat Mass Transfer, 28, 1669–1678.

    Article  Google Scholar 

  • Plumb, O. A., 1994, “Convective Melting of Packed Beds,” Int. J. Heat Mass Transfer, 37, 829–836.

    Article  MATH  Google Scholar 

  • Poirier, D. R., Nandapurkar, P. J., and Ganesan, S., 1991, “The Energy and Solute Conservation Equations for Dendritic Solidification,” Metall. Trans., 22B, 889–900.

    Article  Google Scholar 

  • Prakash, C., 1990, “Two-Phase Model for Binary Solid-Liquid Phase Change, Part I: Governing Equations, Part II: Some Illustration Examples,” Num. Heat Transfer, 18B, 131–167.

    Article  ADS  MATH  Google Scholar 

  • Prescott, P. J.. Incropera, F.P., and Gaskell, D.R., 1992, “The Effects of Undercooling, Recalescence and Solid Transport on the Solidification of Binary Metal Alloys,” in Transport Phenomena in Materials Processing and Manufacturing, ASME HTD-Vol. 196, American Society of Mechanical Engineers, New York.

    Google Scholar 

  • Ramesh, P. S. and Torrance, K. E., 1990, “Stability of Boiling in Porous Media,” Int. J. Heat A lass Transfer, 33, 1895–1908.

    Article  MATH  Google Scholar 

  • Rappaz, M. and Thevoz, Ph., 1987, “Solute Model for Equiaxed Dendritic Growth,” Acta Metall., 35, 1487–1497.

    Article  Google Scholar 

  • Rappaz, M. and Voller, V. R., 1990, “Modelling of Micro-Macrosegregation in Solidification Processes,” Metall. Trans., 21A, 749–753.

    Article  Google Scholar 

  • Reed, A. W., 1986, “A Mechanistic Explanation of Channels in Debris Beds,” ASME J. Heat Transfer, 108, 125–131.

    Article  Google Scholar 

  • Renken, K. J., Carneiro, M. J., and Mcechan, K., 1994, “Analysis of Laminar Forced Convection Condensation within Thin Porous Coating,” J. Thermophy. Heat Transfer, 8, 303–308.

    Article  Google Scholar 

  • Rogers, J. A. and Kaviany, M., 1991, “Funicular and Evaporation Front Regimes in Drying of Ceramic Beds,” Int. J. Heat Mass Transfer, 35, 469–480.

    Article  Google Scholar 

  • Rose, J. W., 1988, “Fundamentals of Condensation Heat Transfer: Laminar Film Condensation,” JSME Int. J. Series II, 31, 357–375.

    ADS  Google Scholar 

  • Shekarriz, A. and Plumb, O. A., 1986, “A Theoretical Study of the Enhancement of Filmwise Condensation Using Porous Fins,” ASME paper no. 86-HT-31.

    Google Scholar 

  • Singh, M. and Behrendt, D. R., 1994, “Reactive Melt Infiltration of Silicon- Niobium Alloys in Microporous Carbons,” J. Mater. Res., 9, 1701–1708.

    Article  ADS  Google Scholar 

  • Sondergeld, C. H. and Turcotte, D. L., 1977, “An Experimental Study of Two- Phase Convection in a Porous Medium with Applications to Geological Problems,” J. Gtophys. Res., 82, 2045–2053.

    Article  ADS  Google Scholar 

  • Song, M., Choi, J., and Viskanta, R., 1993, “Upward Solidification of a Binary Solution Saturated Porous Medium,” Int. J. Heat Mass’.Transfer, 36, 3687–3695.

    Article  Google Scholar 

  • Stanish, M. A., Schajer, G. S., and Kayihan, F., 1986, “A Mathematical Model of Drying for Hygroscopic Porous Media,” AIChE J., 32, 1301–1311.

    Article  Google Scholar 

  • Stewart, L. D. and Udell, K. S., 1989, “The Effect of Gravity and Multiphase Flow on the Stability of Condensation Fronts in Porous Media,” in Multiphase Transport in Porous Media-1989, ASME HTD-Vol. 127 (FED-Vol. 82 ), 29–37.

    Google Scholar 

  • Stewart, L. D., Basel, M. D., and Udell, K. S., 1987, “The Effect of Gravity on Steam Propagation in Porous Media,” in Multiphase Transport in Porous Media. ASME HTD-Vol. 91 (FED-Vol. 60 ), 31–42.

    Google Scholar 

  • Stubos, A. K. and Buchin, J.-M., 1988, “Modeling of Vapor Channeling Behavior in Liquid-Saturated Debris Beds,” ASME J. Heat Transfer, 110, 968–975.

    Article  Google Scholar 

  • Styrikovich, M. A., Malyshenko, S. P., Andrianov, A. B., and Tataev, I. V., 1987, “Investigation of Boiling on Porous Surfaces,” Heat Transfer—Soviet Res., 19, 23–29.

    Google Scholar 

  • Tao, Y.-X. and Gray, D. M., 1994, “Prediction of Snow-Melt Infiltration into Frozen Soils,” Num. Heat Transfer, Part A, 26, 643–665.

    Article  ADS  Google Scholar 

  • Tsung, V. X., Dhir, V. K., and Singh, S., 1985, “Experimental Study of Boiling Heat Transfer from a Sphere Embedded in Liquid Saturated Porous Media,” in Heat Transfer in Porous Media and Particulate Flows, AS ME HTD-Vol. 46, 127–134.

    Google Scholar 

  • Udell, K. S., 1985, “Heat Transfer in Porous Media Considering Phase Change and Capillarity—The Heat Pipe Effect,” Int. J. Heat Mass Transfer, 28, 485–495.

    Article  ADS  MATH  Google Scholar 

  • Vodak, F., Cerny, R., and Prikryl, P., 1992, “A Model of Binary Alloy Solidifica¬tion with Convection in the Melt,” Int. J. Heat Mass Transfer, 35, 1787–1791.

    Article  MATH  Google Scholar 

  • Voller, V. R., Brent, A. D., and Prakash, C., 1989, “The Modeling of Heat, Mass and Solute Transport in Solidification Systems,” Int. J. Heat Mass Transfer, 32, 1719–1731.

    Article  ADS  Google Scholar 

  • Wang, C. Y. and Beckermann, C., 1992, “A Multiphase Micro-Macroscopic Model of Solute Diffusion in Dendritic Alloy Solidification,” in Micro/Macro Scale Phenomena in Solidification, Beckermann, C., etal., Editors, ASME HTD- Vol. 218, 43–57, American Society of Mechanical Engineers, New York.

    Google Scholar 

  • Wang, C. Y. and Beckermann, 1993, “A Multiphase Solute Diffusion Model for Dendritic Alloy Solidification,” Metall. Trans., 24A, 2787–2802.

    Google Scholar 

  • Whitaker, S. and Chou, W. T.-H., 1983, “Drying Granular Porous Media-Theory and Experiment,” Drying Tech., 1, 3–33.

    Article  Google Scholar 

  • Whitaker, S., 1977, “Simultaneous Heat, Mass and Momentum Transfer in Porous Media: A Theory of Drying,” in Advances in Heat Transfer, 13, 119–203.

    Google Scholar 

  • White, S. M. and Tien, C.-L., 1987, “Analysis of Laminar Film Condensation in a Porous Medium,” in Proceeding of the 2d ASME/JSMB Thermal Engineering Joint Conference, 401–406.

    Google Scholar 

  • Woods, A. W., 1991, “Fluid Mixing During Melting,” Phys. Fluids, A3, 1393–1404.

    Article  ADS  Google Scholar 

  • Worster, M. G., 1991, “Natural Convection in a Mushy Laver,” J. Flutd Mech., 224, 335–339.

    Article  ADS  MATH  Google Scholar 

  • Yortsos, Y. C., 1982, “Effect of Heat Losses on the Stability of Thermal Displacement Fronts in Porous Media,” AIChE J., 28, 480–486.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kaviany, M. (1995). Phase Change. In: Principles of Heat Transfer in Porous Media. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4254-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4254-3_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8710-0

  • Online ISBN: 978-1-4612-4254-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics