Skip to main content

A Class of Error Estimators Based on Interpolating the Finite Element Solutions for Reaction-Diffusion Equations

  • Conference paper
Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 75))

Abstract

The swift, improvement of computational capabilities enables us to apply finite element methods to simulate more and more problems arising from various applications. A fundamental question associated with finite element simulations is their accuracy. In other words, before we can make any decisions based on the numerical solutions, we must be sure that they are acceptable in the sense that their errors are within the given tolerances. Various estimators have been developed to assess the accuracy of finite element solutions, and they can be classified basically into two types: a priori error estimates and a posteriori error estimates. While a priori error estimates can give us asymptotic convergence rates of numerical solutions in terms of the grid size before the computations, they depend on certain Sobolev norms of the true solutions which are not known, in general. Therefore, it is difficult, if not impossible, to use a priori estimates directly to decide whether a numerical solution is acceptable or a finer partition (and so a new numerical solution) is needed. In contrast, a posteriori error estimates depends only on the numerical solutions, and they usually give computable quantities about the accuracy of the numerical solutions.

This research was supported in part by National Science Foundation Grants Nos. DMS-8922865 and EPSCoR EHR-9108772, by funding from DOE, DE-ACO5-840R21400, Martin Marietta, Subcontract, SK965C and SK966V, by funding from the Institutes for Scientific Computation at Texas A&M University, and by funding from Office of Naval Research Contract No. 0014-88-K-0370.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ainsworth and A. Craig, A posteriori error estimators in the finite element method, Numerische Mathematik, 60, 429–463 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  2. A.B. Andreev, and R.D. Lazarov, Superconvergence of the gradient for quadratic triangular finite elements, Numerical Methods for Partial Differential Equations, 4, 15–32, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Barlow, Optimal stress location in finite element models, Int. J. Numer, Mech. Eng., 10, 243–251 (1976).

    Article  MATH  Google Scholar 

  4. C.M Chen, Superconvergence of finite element solutions and their derivatives, Num.tr. Math. J. Chinese Univ., 3 (1981), 118–125.

    MATH  Google Scholar 

  5. S.-S. Chow and R. D. Lazarov, Superconvergence analysis of flux computations for nonlinear problems, Bull. Austral. Math. Soc., Vol. 40 (1989), 465–479.

    Article  MathSciNet  MATH  Google Scholar 

  6. S.S. Chow, G.F. Carey, and R.D. Lazarov, Natural and postprocessed superconvergence in semilinearproblems, Numerical Methods for Partial Differential Equations, 7 (1991), 245–259.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  8. J. Douglas, T. Dupont and M. Wheeler, A Galerkin procedure for approximating the flux on the boundary for elliptic and parabolic boundary value problems, RAIRO Anal. Numer. 2 (1974), 47–59.

    MathSciNet  Google Scholar 

  9. T. Dupont, L 2-estimates for Galerkin methods for second order hyperbolic equations. SIAM J. Numer. Anal. 10, (1973), 880–889.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Ewing, On efficient time-stepping methods for nonlinear partial differential equations, Comp. & Maths. with Appls., Vol. 6, pp. 1–13, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Goodsell and J.R. Whiteman, Superconvergence of recovered gradients of piecewise quadratic finite element approximations. Part I: L 2-error estimates. Numerical Methods for Partial Differential Equations, 1, 61–83, 1991.

    Article  Google Scholar 

  12. M. Křížek and R. Neittaanmäki, On superconvergence techniques. Acta Applicandae Mathematical 9 (1987), 175–198.

    Article  MATH  Google Scholar 

  13. N.D. Levine, Superconvergent recovery of the gradient from piecewise linear finite element approximations, IMA J. Numcr. Anl., 5 (1985), 407–472.

    Article  MATH  Google Scholar 

  14. Q. Lin, Global error expansion and superconvergence for higher order interpolat ion of finite elements. J. Comp. Math. 4, (1991).

    Google Scholar 

  15. Q. Lin, Interpolated Finite Element Methods and Global Error Expansions, (to appear).

    Google Scholar 

  16. Q. Lin, T. Lü, and S. Shen, Maximum norm estimate, extrapolation and optimal point of stresses for the finite clement methods on the strongly regular triangulations, J. Comput. Math., 1 (1983), 376–383.

    MATH  Google Scholar 

  17. Q. Lin, H. Wang, and T. Lin, Interpolated finite element methods for second order hyperbolic equations and their global super-convergence, System Sciences and Mathematics, 4 (1993), 331–340.

    Google Scholar 

  18. Q. Lin and J. Xu, Linear finite element with high accuracy, J. Comput. Math., 3 (1985), 115–133.

    MathSciNet  MATH  Google Scholar 

  19. T. Lin, H. Wang, A globally super-convergent post-processing technique for approximating the gradient of the solution to elliptic boundary value problems, (submitted to Applied Numerical Analysis.)

    Google Scholar 

  20. T. Lin and H. Wang, Recovering the gradients of the solutions of second-order hyperbolic equations by interpolating the finite element solutions, IMA Preprint Series # 1157, July, 1993.

    Google Scholar 

  21. L.A Oganesjan and L.A Ruhovec, An investigation of the rate of convergence of variational difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary, U.S.S.R. Computational Mathematics and Mathematical Physics, Vol. 9, 5 (1969), 158–183.

    Article  MathSciNet  Google Scholar 

  22. G. Strang and G.J. Fix, An analysis of the finite element method, Prentice-Hall. Englewood Cliffs, 1973.

    MATH  Google Scholar 

  23. V. Thomée, Galerkin finite element methods for parabolic problems. Lecture Notes in Math. 1054, Springer-Verlag, 1984.

    Google Scholar 

  24. V. Thomée, J.C. Xu, and N.Y. Zhang, Superconvergence of the gradient in piecewise linear finite element approximation to a parabolic problem. SIAM J. Numer. Anal., Vol. 26, No. 3, 553–573, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Wang, Superconvergence of finite element solution and its derivatives for quasi-linear second order hyperbolic equations. Northeastern Math. J., 2, (1986), 205–214.

    MATH  Google Scholar 

  26. H. Wang, Stability and convergence of the finite element methods for nonlinear second order hyperbolic equations. Mathematica Numerica Sinica, 9, (1987), 87–99.

    Google Scholar 

  27. M.F. Wheeler, Galerkin procedure for estimating the flux two-point boundary value problems, SIAM J. Numer. Anal., 11 (1974), 764–768.

    Article  MathSciNet  MATH  Google Scholar 

  28. J.R. Whiteman and G. Goodsell, Some gradient superconvergence results in the finite element method, Numerical Analysis and Parallel Processing, Lecture Notes in Mathematics, No. 1397, 182–258, Springer-Verlag, Berlin, 1987.

    Chapter  Google Scholar 

  29. Y. Yuan and H. Wang, Error estimates for the finite element method for nonlinear hyperbolic equations, J. Sys. Sci. and Math. Sci. 5, (1985), pp. 161–171.

    MathSciNet  MATH  Google Scholar 

  30. O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique, International Journal for Numerical Methods in Engineering, Vol. 33, 1331–1364 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  31. Q. Zhu and Q. Lin, Superconvergence theory of FEM, Hunan Science Press, P. R. China, 1989.

    Google Scholar 

  32. Q.D. Zhu, Uniform superconvergcnce estimates of derivatives for the finite element method, Numer. Math. J. Chinese Univ., 5(1983),

    Google Scholar 

  33. M. Zlámal, Some superconvergence results in the finite element method, Mathematical aspects of finite element method, lecture Notes in Mathematics, Vol. 606, Springer-Verlag, New York, 1977, 353–362.

    Chapter  Google Scholar 

  34. M. Zlámal, Superconvergencc and rcduccd integration in the finite element method, Math. Comp. 32 (1978), 663–685.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York

About this paper

Cite this paper

Lin, T., Wang, H. (1995). A Class of Error Estimators Based on Interpolating the Finite Element Solutions for Reaction-Diffusion Equations. In: Babuska, I., Henshaw, W.D., Oliger, J.E., Flaherty, J.E., Hopcroft, J.E., Tezduyar, T. (eds) Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations. The IMA Volumes in Mathematics and its Applications, vol 75. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4248-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4248-2_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8707-0

  • Online ISBN: 978-1-4612-4248-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics