Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 75))

Abstract

Important problems in Computational Medicine exist that can benefit from the implementation of adaptive mesh refinement techniques. Biological systems are so inherently complex that only efficient models running on state of the art hardware can begin to simulate reality. To tackle the complex geometries associated with medical applications we present a general purpose mesh generation scheme based upon the Delaunay tessellation algorithm and an iterative point generator. In addition, automatic, two- and three-dimensional adaptive mesh refinement methods are presented that are derived from local and global estimates of the finite element error. Mesh generation and adaptive refinement techniques are utilized to obtain accurate approximations of bioelectric fields within anatomically correct models of the heart and human thorax. Specifically, we explore the simulation of cardiac defibrillation and the general forward and inverse problems in electrocardiography (ECG). Comparisons between uniform and adaptive refinement techniques are made to highlight the computational efficiency and accuracy of adaptive methods in the solution of field problems in computational medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Board, Grand Challenges in Biomedical Computing, chapter 18, pages 479–502. CRC Press, Inc., Boca Raton, FL, 1993.

    Google Scholar 

  2. P. Hunter, P. Nielsen, I. Smaill, B. LeGrice, and I. Hunter, An Anatomical Heart Model with Applications to Myocardial Activation and Ventricular Mechanics, chapter 1. pages 3–26. CRC Press, Inc., Boca Raton, FL, 1993.

    Google Scholar 

  3. C. Peskin and D. McQueen, Cardiac Fluid Dynamics, chapter 3, pages 51–32. CRC Press, Inc., Boca Raton. FL, 1993.

    Google Scholar 

  4. R. Spilker, E. de Almeida, and P. Donzelli, Finite Element Methods for the Biomechanics of Soft Hydrated Tissues: Nonlinear Analysis and Adaptive Control of Meshes, chapter 9, pages 227–262. CRC Press, Inc., Boca Raton, FL, 1993.

    Google Scholar 

  5. J. Rosenman and T. Cullip, High-Performance Computing in Radiation Cancer Treatment, chapter 17, pages 465–478. CRC Press, Inc., Boca Raton, FL, 1993.

    Google Scholar 

  6. R. Plonsey and D. Fleming, Bioelectric Phenomena. McGraw-Hill Book Company, New York, 1969.

    Google Scholar 

  7. R.S. MacLeod, Percutaneous Transluminal Coronary Angioplasty as a Model of Cardiac Ischemia: Clinical and Modelling Studies. PhD thesis, Dalhousie University, Halifax, N.S. Canada. 1990.

    Google Scholar 

  8. R.S. MaCleod, C.R. Johnson, and B.M. Gardner, M.J. Horáček, Localization of ischemia during coronary angioplasty using body surface potential mapping and an electrocardiographic inverse solution. In Computers in Cardiology, pages 251–254. IEEE Press. 1992.

    Chapter  Google Scholar 

  9. R.M. Gulrajani, P. Savard, and F.A. Roberge, The inverse problem in electrocardiography: Solutions in terms of equivalent sources. CRC Crit. Rev. Biomed. Eng., 16: 171–214, 1988.

    Google Scholar 

  10. Y. Yamashita, Theoretical studies on the inverse problem in electrocardiography and the uniqueness of the solution. IEEE Trans Biomed Eng, BME-29: 719–725, 1982.

    Article  Google Scholar 

  11. R.M. Gulrajani, F.A. Roberge, and G.E. Mailloux, The forward problem of electrocardiography. In P.W. Macfarlane and T.D. Veitch Lawrie, editors. Comprehensive Electrocardiology, pages 197–236. Pergamon Press, Oxford, England, 1989. Volume 1.

    Google Scholar 

  12. R.M. Gulrajani, F.A. Roberge, and P. Savard, The inverse problem of electrocardiography. In P.W. Macfarlane and T.D. Veitch Lawrie, editors. Comprehensive Electrocardiology, pages 237–288. Pergamon Press, Oxford, England, 1989. Volume 1.

    Google Scholar 

  13. Y. Rudy and B.J. Messinger-Rapport, The inverse solution in electrocardiography: Solutions in terms of cpicardial potentials. CRC Crit. Rev. Biomed. Eng., 16: 215–268, 1988.

    Google Scholar 

  14. C.R. Johnson and A.E. Pollard, Electrical activation of the heart: Computational studies of the forward and inverse problems in electrocardiography. In K.R. Billingsley, H.V. Brown III, and E.D. Durohanes, editors. Computer Assisted Modeling on the IBM 3090, pages 583–628. Baldwin Press, University of Georgia, Athens, Georgia, 1992.

    Google Scholar 

  15. C.R. Johnson, The generalized inverse problem in electrocardiography. In IEEE Engineering in Medicine and Biology Society 12th /Innua/ International Conference, pages 593–594. IEEE Press, 1990.

    Google Scholar 

  16. D.F. Watson, Computing the n-dimensional dealunay tesselation with applications to voronoi polytopes. Computer Journal, 24 (2): 167–172, 1981.

    Article  MathSciNet  Google Scholar 

  17. N. Weatherill and O. Hassan, efficient three-dimensional grid generation using the Delaunay triangulation. In Proceeings of the 1st European CFD Conference, volume 1, 1992.

    Google Scholar 

  18. A. Watt, Fundamentals of Three-Dimensional Computer Graphics. Addison-Wesley, Wokingham, England, 1989.

    MATH  Google Scholar 

  19. M. Mirowski, Mower M., P. Reid, L. Watkins, and A. Langer, The automatic implantable defibrillator, Pace, 5: 384–399, 1982.

    Google Scholar 

  20. A. Langer, M. Heilman, M. Mower, and M. Mirowski, considerations in the development of the automatic implantable defibrillator. Medical instrumentation, 10: 163–167, 1976.

    Google Scholar 

  21. M. Mirowski, The automatic implantable cardioverter-defibrillation: an overview. Journal of the American College of Cardiology, 6: 461–466, 1985.

    Article  Google Scholar 

  22. O. Deale and B. Lerman, Intrathoracic current flow during transthoracic defibrillation in dogs. Circulation Research, 67: 1405–1419, 1990.

    Google Scholar 

  23. B. Lerman and O. Deale, Relation betweend transcardiac and transthoracic current during defibrillation in humans. Circulation Research, 67: 1420–1426, 1990.

    Google Scholar 

  24. W. Karlon, S. Eisenberg, and J. Lehr, Defibrillation current density distributions: a three-dimensional finite element model of the canine thorax. In Proceedings of the I3th Annual Conference of the IEEE Engineering in Medicine and Biology Society, volume 13, pages 770–771, 1991.

    Chapter  Google Scholar 

  25. W. Karlon, Defibrillation current density distributions: A three-dimensional finite clement model of the canine thorax. M.s. thesis, Boston University, Boston, MA, 1991.

    Google Scholar 

  26. F. Claydon, T. Pilkington, A. Tang, M. Morrow, and R. Ideker, A volume conductor model of the thorax for the study of defibrillation fields. IEEE Transactions on Biomedical Engineering, BME-35, 1988.

    Google Scholar 

  27. H. Fuchs, Z. Kedem, and S. Uselton, Optimal surface reconstruction from planar contours. Communications of the ACM, 20, 1977.

    Google Scholar 

  28. C.R. Johnson, R.S. MacLeod, and P.R. Ershler, A computer model for the study of electrical current flow in the human thorax. Computers in Biology and Medicine, 22 (3): 305–323, 1992.

    Article  Google Scholar 

  29. C.R. Johnson, R.S. MaCleod, and M.A. Matheson, Computersimultions reveal complexity of electrical activity in the human thorax. Comp. in Physics, 6(3):230–237, May/June 1992.

    Google Scholar 

  30. C.R. Johnson, R.S. MaCleod, and M.A. Matheson, Computational medicine: Bioelectric field problems. IEEE COMPUTER, pages 59–67, Oct., 1993.

    Google Scholar 

  31. P. Colli Franzone, L. Guerri, B. Taccardi, and C. Viganotti, Finite element approximation of regularized solutions of the inverse potential problem of electrocardiography and applications to experimental data. Calcolo, XXII (I): 91–186, 1985.

    Article  MathSciNet  Google Scholar 

  32. B.J. Messinger-Raport and Y. Rudy. Noninvasive recovery of epicardial potentials in realistic heart-torso geometry. Circ Res, 66, 4: 1023–1039, 1990.

    Google Scholar 

  33. D. Burnett, Finite Element Analysis- From Concepts to Applications. Addison-Wesley, Reading, MA, 1987.

    MATH  Google Scholar 

  34. R. Lewis, H. Huang, A. Usmani, and J. Cross, Finite element analysis of heat transfer and flow problems using adaptive remeshing including application to solidification problems. International Journal of Numerical Methods in Engineering, 32: 767–781, 1991.

    Article  Google Scholar 

  35. O. Zienkiewicz and J. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. International Journal of Numerical Methods in Engineering, 24: 337–357, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  36. O. Zienkiewicz and J. Zhu, Adaptivity and mesh generation. International Journal of Numerical Methods in Engineering, 32: 783–810, 1991.

    Article  MATH  Google Scholar 

  37. P.G. Ciarlet and J.L Lions, Handbook of Numerical Analysis: Finite Element Methods. volume 1. North-Holland, Amsterdam, 1991.

    MATH  Google Scholar 

  38. C. Johnson, Numercial solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  39. R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations. Math. Comp., 38: 437–445, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  40. C.R. Johnson and R.S. MacLeod, Nonuniform spatial mesh adaptation using a posteriori error estimates: applications to forward and inverse problems. Applied Numerical Mathematics, vol. 14, 311–326, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  41. P. Nielsen, I. Le Grice, B. Smaill, and P. Hunter, Mathematical model of geometry and fibrous structure of the heart, American Journal of Physiology: Heart Circulation and Physiology, 29: 1365–1378, 1991.

    Google Scholar 

  42. C.R. Johnson, R.S. MacLeod, and A. Dutson, Effects of anistropy and inhomogeneity on electrocardiographic fields: a finite element study. In IEEE Engineering in Medicine and Biology Society 14th Annval International Conference, pages 2009–2010. IEEE Press, 1992.

    Google Scholar 

  43. K.R. Foster and H.P. Schwan, Dielectric properties of tissues and biological materials: A critical review. Critical Reviews in Biomed. Eng., 17: 25–104, 1989.

    Google Scholar 

  44. P.C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 34 (4): 561–580, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  45. F.P. Colli Franzone, G. Gassaniga, L. Guerri, B. Taccardi, and C. Viganotti, Accuracy evaluation in direct and inverse elect rocardiology. In P.W. Macfarlane, editor, Progress in Electrocardiography, pages 83–87. Pitman Medical, 1979.

    Google Scholar 

  46. P. Colli Franzone, L. Guerri, S. Tentonia, C. Viganotti, S. Spaggiari, and B. Taccardi, A numerical procedure for solving the inverse problem of electrocardiography. Analysis of the time-space accuracy from in vitro experimental data. Math Biosci, 77: 353, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  47. B.J. Messinger-Rapport and Y. Rudy, Regularization of the inverse problem in electrocardiography: A model study. Math Biosci, 89: 79–118, 1988.

    Article  MATH  Google Scholar 

  48. P.C. Stanley, T.C. Pilkington, and M.N. Morrow, The effects of thoracic inhomogencities on the relationship between epicardial and torso potentials. IEEE Trans Biomed Eng. BME-33: 273–284, 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York

About this paper

Cite this paper

Schmidt, J.A., Johnson, C.R., Eason, J.C., Macleod, R.S. (1995). Applications of Automatic Mesh Generation and Adaptive Methods in Computational Medicine. In: Babuska, I., Henshaw, W.D., Oliger, J.E., Flaherty, J.E., Hopcroft, J.E., Tezduyar, T. (eds) Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations. The IMA Volumes in Mathematics and its Applications, vol 75. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4248-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4248-2_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8707-0

  • Online ISBN: 978-1-4612-4248-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics