Skip to main content

Biomass Partitioning and Resource Allocation of Plants from Mediterranean-Type Ecosystems: Possible Responses to Elevated Atmospheric CO2

  • Chapter
Global Change and Mediterranean-Type Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 117))

Abstract

Predicting the effects of global change on Mediterranean-type ecosystems requires an understanding of the direct effects of elevated atmospheric CO2 on plant growth and development. While the immediate effects of CO2 on leaf photosynthesis are well known, these effects can lead to changes in allocation patterns and other properties at the whole-plant level (Strain, 1985) that are not well known or understood. For example, elevated CO2 can modify leaf photosynthetic capacity and alter gross morphology (Larigauderie et al., 1988), influence interactions among plants (Bazzaz and Carlson, 1984), and alter net ecosystem carbon exchange with the atmosphere (Hilbert et al., 1987). This chapter discusses the importance of allocation in determining whole-plant responses to CO2, reviews some of the general characteristics of woody plants from Mediterranean-type ecosystems that may influence their sensitivity to increased CO2, and applies some modeling approaches to consider how biomass partitioning and resource allocation in Mediterranean plants may influence their responses to elevated CO2..

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ã…gren GI, Ingestad T. 1987. Root:shoot ratio as a balance between nitrogen productivity and photosynthesis. Plant Cell Environ 10: 579–586.

    Google Scholar 

  • Ball JT. 1988. An analysis of stomatal conductance. PhD dissertation, Stanford University, Stanford. CA. 88 pp.

    Google Scholar 

  • Bazzaz FA, Carlson RW. 1984. The response of plants to elevated CO2. I. Competition among an assemblage of annuals at two levels of soil moisture. Oecologia 62: 1–198.

    Article  Google Scholar 

  • Björkman O. 1981. Responses to different quantum flux densities, pp. 57–107. In: Encyclopedia of Plant Physiology Vol. 12A, Physiological Plant Ecology I. Responses to the physical environment. Lange OL, PS Nobel, CB Osmond, and I I Ziegler (eds). Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Black CH. 1987. Biomass, nitrogen, and phosphorus accumulation over a southern California fire cycle chronosequence. In: Plant Response to Stress. Tenhunen JD, FM Catarino, OL Lange, and WC Oechel (eds). Springer-Verlag, Berlin, pp. 445–458.

    Google Scholar 

  • Booysen PV. Tainton N.M. 1984. Ecological Effects of Fire in South African Ecosystems. Springer-Verlag, Berlin.

    Google Scholar 

  • Borchert R. 1973. Simulation of rhythmic tree growth under constant conditions. Physiol Plant 29: 173–180.

    Article  Google Scholar 

  • Brouwer R. 1962. Nutritive influences on the distribution of dry matter in the plant. Neth J Agrie Sei 10: 399–408.

    Google Scholar 

  • von Caemmerer S, Farquhar GD. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376– 387.

    Article  Google Scholar 

  • Canadell J, Roda F. 1991. Root biomass of Quercus ilex in a montane Mediterranean forest. Can J For Res 21: 1771–1778.

    Article  Google Scholar 

  • Canadell J, Zedier PH. 1995. Underground structures of woody plants in the Mediterranean ecosystems of Australia. California, and Chile. In: Ecology and Biogeography of Mediterranean Ecosystems in Chile, California and Australia, Arroyo MTK. PH Zedier, and MD Fox (eds). Springer-Verlag, New York, pp. 177–210.

    Google Scholar 

  • Canadell J, Lloret F, López-Soria L. 1991. Resprouting vigor of two Mediterranean shrub species after experimental fire treatments. Vegetatio 95: 119–126.

    Google Scholar 

  • Canadell J, Riba M, Andrés P. 1988. Biomass equations for Quercus ilex L. in the Montscny massif, northeastern Spain. Forestry 61: 137–147.

    Article  Google Scholar 

  • Cannell, MGR. 1982. World Forest Biomass and Primary Production Data. Academic Press, London.

    Google Scholar 

  • Carlquist S. 1977. Wood anatomy of Penaeaceae (Myrtales): comparative, phylo- genetic, and ecological implications. Bot J Linn Soc 75: 211–227.

    Article  Google Scholar 

  • Chapin FS III. 1980. The mineral nutrition of wild plants. Ann Rev Ecol Syst 11: 233–260.

    Article  CAS  Google Scholar 

  • Chapin FS III, Bloom AJ, Field CB, Waring RH. 1987. Plant responses to multiple environmental factors. Bioscience 37: 49–57.

    Article  Google Scholar 

  • Charles-Edwards DA. 1976. Shoot and root activities during steady state plant growth. Ann Bot 40: 767–772.

    Google Scholar 

  • Charles-Edwards DA. 1982. Physiological Determinants of Crop Growth. Academic Press. London. New York. Toronto. Sydney, San Francisco, 161 pp.

    Google Scholar 

  • Clarkson DT. 1985. Factors affecting mineral nutrient acquisition by plants. Ann Rev Plant Physiol 36: 77–115.

    Article  CAS  Google Scholar 

  • Cooper AJ. Thornley JHM. 1976. Responses of dry matter partitioning, growth, and carbon and nitrogen levels in the tomato plant to changes in root temperature: experiment and theory. Ann Bot 40: 1139–1152.

    CAS  Google Scholar 

  • Cure JD. 1985. Carbon dioxide doubling responses: A crop survey. In: Direct effects of increasing carbon dioxide on vegetation. Strain BR and JD Cure (eds). U.S. DOE, Nat. Tech. Info. Service, Springfield. VA. pp. 99–116.

    Google Scholar 

  • Davidson RL. 1969. Effects of soil nutrients and moisture on root/shoot ratios in Lolium perenne L. and Trifolium repens L. Ann Bot 33: 571–577.

    Google Scholar 

  • Dodd J, Heddle EM. Pate JS. Dixon KW. 1984. Rooting patterns of sand plain plants and their functional significance. In: Kwongan—Plant Life of the Sand plain. Pate JS and JS Beard (eds). University of Western Australia Press. Nedlands, pp. 146–177.

    Google Scholar 

  • Edwards JH, Barber SA. 1976. Nitrogen flux into corn roots as influenced by shoot requirements. Agron J 689: 471–473.

    Article  Google Scholar 

  • Ehleringer JR. Pearcy RW, Mooney HA. 1986. Recommendations of the workshop on the future development of plant physiological ecology. Bull Ecol Soc Am 67: 48–58.

    Google Scholar 

  • Escarré A. Ferrés LI, López R. Martin J, Rodà F, Terradas J. 1987. Nutrient use strategy by evergreen-oak (Quercus ilex ssp. ilex) in NE Spain. In: Plant Response to Stress, Tenhunen JD. FM Catarino, OL Lange, and WC Oechel (eds). Springer-Verlag. Berlin, pp. 429–435.

    Google Scholar 

  • Escudero A. Manzano JJ, del Arco JM. 1987. Nitrogen concentrations in the leaves of different Mediterranean woody species. Ecol Mediterr 13: 11–17.

    Google Scholar 

  • Farquhar OD, von Cammerer S. Berry JA. 1980. A biochemical model for photosynthetic C02 assimilation in leaves of CO2 specics. Planta 149: 78–90.

    Article  CAS  Google Scholar 

  • Ferrés L. 1984. Biomassa, produceión y mineralomasa del encinar montano de La Castanya (Montseny). PhD Dissertation. Universität Autònoma de Barcelona. Spain.

    Google Scholar 

  • Field C. 1983. Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia 56: 341–347.

    Article  Google Scholar 

  • Field C, Mooney HA. 1983. Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub. Oecologia 56: 348–355.

    Article  Google Scholar 

  • Field C. Mooney HA. 1986. The photosynthesis-nitrogen relationship in wild plants. In: On the Economy of Plant Form and Function, Givnish TJ (ed). Cambridge University Press, Cambridge, UK. pp. 25–55.

    Google Scholar 

  • Gill DS, Mahall BE. 1986. Ouantitative phenology and water relations of an evergreen and a deciduous chaparral shrub. Ecol Monog 56: 127–143.

    Article  Google Scholar 

  • Givnish TJ. 1986. On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, UK, 717 pp.

    Google Scholar 

  • Gray JT. 1982. Community structure and productivity in Ceanothus chaparral and coastal sage scrub of southern California. Ecol Monog 52: 415–435.

    Article  Google Scholar 

  • Gray JT, Schlesinger WH. 1981. Biomass, production, and litterfall in the coastal sage scrub of southern California. Am J Bot 68: 24–33.

    Article  Google Scholar 

  • Groves RH, Hocking PJ, McMahon J. 1986. Distribution of biomass, nitrogen, phosphorus and other nutrients in Banksia marginala and D. ornata shoots of different ages after fire. Aust J Bot 34:709– 725.

    Google Scholar 

  • Harley PC, Tenhunen JD. 1991. Modeling the photosynthetic response of C3 leaves to environmental factors. In: Modeling Crop Photosynthesis—From Biochemistry to Canopy. Boote KJ (ed). Proceedings of American Society of Agronomy Symposium.

    Google Scholar 

  • Hellmers H, Horton JS, Juhren G, O’Keefe J. 1955. Root systems of some chaparral plants in southern California. Ecology 36: 667–678.

    Article  Google Scholar 

  • Higgins KB, Lamb AJ, van Wilgen BW. 1987. Root systems of selected plant species in mesic mountain fynbos in the Jonkershoek Valley, South-western Cape Province. S Afr J Bot 53: 249–257.

    Google Scholar 

  • Hilbert DW. 1990. Optimization of plant root:shoot ratios and internal nitrogen concentration. Ann Bot 66: 91–99.

    CAS  Google Scholar 

  • Hilbert DW, Reynolds JF. 1991. A model allocating growth among leaf proteins, shoot structure, and root biomass to produce balanced activity. Ann Bot 68: 417–425.

    Google Scholar 

  • Hilbert DW, Larigauderie A, Reynolds JF. 1991. Influence of carbon dioxide and daily photon-flux density on optimal leaf nitrogen concentration and root: shoot ratio. Ann Bot 68: 365–376.

    CAS  Google Scholar 

  • Hilbert DW. Prudhomme TI. Oechel WC. 1987. Response of tussock tundra to elevated carbon dioxide regimes: analysis of ecosystem C02 flux through nonlinear modeling. Oecologia 72: 466–472.

    Article  Google Scholar 

  • Hocking PJ, Meyers CP. 1985. Responses of Noogoora Burr (Xanthium occidental Bertol.) to nitrogen supply and carbon dioxide enrichment. Ann Bot 55:835–844.

    Google Scholar 

  • Hoffmann A, Kummerow J. 1978. Roots studies in the Chilean matorral. Oecologia 32: 57–69.

    Article  Google Scholar 

  • James S. 1984. Lignotuhers and burls—their structure, function and ecological significance in Mediterranean ecosystems. Bot Rev 50: 225–266.

    Article  Google Scholar 

  • Johnson IR. 1985. A model of the partitioning of growth between the shoots and roots of vegetative plants. Ann Bot 55: 421–431.

    Google Scholar 

  • Kimball BA. 1983. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron J 75: 779–788.

    Article  Google Scholar 

  • Kruger FJ. 1977. Ecology of Cape fynbos in relation to fire. In: Symposium on the Environmental Consequences of Fire and Fuel Management in Mediterranean-Climate Ecosystems. Mooney HA and CE Conrad (eds). USDA Forest Service General Technical Report WO-3, pp. 230–244.

    Google Scholar 

  • Kruger FJ, Mitchell DT, Jarvis JUM (eds). 1983. Mediterranean-Type Ecosystems. The Role of Nutrients. Springer-Verlag, Berlin.

    Google Scholar 

  • Kummerow J. 1981. Structure of roots and root systems. In: Mediterranean-type Shrublands. di Castri F. DW Goodall, and RL Specht (eds). Elsevier Scientific Publications Company, Amsterdam, pp. 269–288.

    Google Scholar 

  • Kummerow J, Ellis BA. 1989. Structure and function in chaparral shrubs. In: The California Chaparral—Paradigms Reexamined, Keeley SC (ed). Natural History Museum of Los Angeles County, Los Angeles, CA, pp. 140–150.

    Google Scholar 

  • Kummerow J. Mangan R. 1981. Root systems in Quercus dumosa Nutt. dominated chaparral in southern California. Ac Oecol/Oecol Plant 2: 177–188.

    Google Scholar 

  • Kummerow J, Wright CD. 1988. Root distribution and resource availability in mixed chaparral of southern California. Proceedings 5th International Conference on Mediterranean Ecosystems (MF.DF.COS). International Union of Biological Sciences, Paris, pp. 225–259.

    Google Scholar 

  • Kummerow J, Krause D, Jow W. 1977. Root svstems of chaparral shrubs. Oecologia 29: 163–177.

    Google Scholar 

  • Kummerow J, Krause D, Jow W. 1978. Seasonal changes of fine root density in the southern California chaparral. Oecologia 37: 201–212.

    Article  Google Scholar 

  • Kummerow J, Kummerow M. Trabaud L. 1990. Root biomass, root distribution and the fine-root growth dynamics of Quercus coccifera L. in the garrigue of southern France. Vegetatio 87: 37–44.

    Article  Google Scholar 

  • Kummerow J, Mills JN, Ellis BA, Kummerow A. 1988. Growth dynamics of cotton-grass (Eriophorum vagina turn). Can J Bot 66: 253–256.

    Article  Google Scholar 

  • Lacey CJ. 1983. Development of large plate-like lignotubers in Eucalyptus botryoides Sm. in relation to environmental factors. Aust J Bot 31: 105–118.

    Article  Google Scholar 

  • Larigauderie A, Hilbert DW, Oechel WC. 1988. Effects of CO2 enrichment and nitrogen availability on resource acquisition and resource allocation in a grass, Bromus mollis. Oecologia 77: 544–549.

    Article  Google Scholar 

  • Ledig FT. 1969. A growth model based on the rate of photosynthesis and distribution of assimilates. Photosynthetica 3: 263–275.

    CAS  Google Scholar 

  • Loomis RS. 1983. Productivity of agricultural systems. In: Encyclopedia of Plant Physiology. NS vol. 12D: Physiological Plant Ecology IV: Ecosystems Processes: Mineral Cycling, Productivity, and Man’s Influence, Lange OL. PS Nobel, CB Osmond, and H Ziegler (eds). Springer, Berlin-Heidelberg, New York, Tokyo, pp. 151–172.

    Google Scholar 

  • Low AB. 1983. Phytomass and major nutrient pools in an 11-year post-fire coastal fynbos community. S Afr J Bot 2: 98–104.

    Google Scholar 

  • Low AB, Lamont BB. 1990. Aerial and below-ground phytomass of banksia scrub-heath at Eneabba, South-western Australia. Aust J Bot 38: 351–359.

    Article  Google Scholar 

  • Madsen E. 1975. Effect of C02 enrichment on growth, development, fruit production and fruit quality of tomato from a physiological viewpoint. Phytotronics 111: 318–330.

    Google Scholar 

  • Mäkelä AA, Sievänen RP. 1987. Comparison of two shoot-root partitioning models with respect to substrate utilization and functional balance. Ann Bot 59: 129–140.

    Google Scholar 

  • Malanson GP, Trabaud L. 1987. Post-fire development of canopy structure in a Mediterranean shrub, Quercus coccifera L. Phys Geogr 8: 266–274.

    Google Scholar 

  • Margaris NS. 1976. Structure and dynamics in a phryganic (cast Mediterranean) ecosystem. J Biog 3: 249–259.

    Article  Google Scholar 

  • Margaris NS, Adamandiadou S, Siafacaf L, Diamantopoulos J. 1984. Nitrogen and phosphorus content in plants species of Mediterranean ecosystems in Greece. Vegetatio 55: 29–35.

    Article  Google Scholar 

  • Medina E. 1971. Effect of nitrogen supply and light intensity during growth on the photosynthetic capacity and carboxydismutase activity of leaves of Atriplex hastata spp. hastata. Carnegie Institute Washington Yearbook 70: 551–559.

    Google Scholar 

  • Merino J, Field C, Mooney HA. 1982. Construction and maintenance costs of Mediterranean-climate evergreen and deciduous leaves. I. Growth and C02 exchange analysis. Oecologia 53: 208–213.

    Article  Google Scholar 

  • Mesleard F. 1987. Dynamique, après pertubations, de peuplements de deux éricacées (Arbutus unedo L. et Erica arborea L.) en Corse. PhD Dissertation. Université des Sciences et Techniques du Languedoc, France, 146 pp.

    Google Scholar 

  • Miller PC, Stoner WA. 1979. Canopy structural and environmental interactions. In: Topics in Plant Population Biology, Solbrig OT, S Jain, GB Johnson, and PII Raven (eds). Columbia University Press, New York, pp. 428–458.

    Google Scholar 

  • Miyanishi K, Kellman M. 1986. The role of root nitrient reserves in regrowth of two savanna shrubs. Can J Bot 64: 1244–1248.

    Article  CAS  Google Scholar 

  • Monsi M. 1968. Mathematical models of plant communities. In: Functioning of Terrestrial Ecosystems at the Primary Production Level, Eckardt FE (ed). UNESCO. Paris, pp. 131–149.

    Google Scholar 

  • Montenegro G, Avila G, Schatte P. 1983. Presence and development of ligno- tubers in shrubs of the Chilean matorral. Can J Bot 61: 1804–1808.

    Article  Google Scholar 

  • Mooney, HA. 1972. The carbon balance of plants. Ann Rev Ecol Syst 3: 315–346.

    Article  CAS  Google Scholar 

  • Mooney HA. 1983. Carbon-gaining capacity and allocation patterns of Mediterranean-climate plants. In: Mediterranean—Type Ecosystems. The Role of nutrients, Kurger FJ, DT Mitchell, and JUM Jarvis (eds). Springer-Verlag, Berlin, pp. 103–119.

    Google Scholar 

  • Mooney HA. 1987. The impact of environmental stress on plant performance in Mediterranean-climate: Differing levels of analysis. In: Plant Response to Stress—Functional Analysis in Mediterranean Ecosystems, Tehnunen JD, FM Catarino. OL Lange, and WC Oechel (eds). Springer-Verlag. Berlin, Heidelberg, New York, Tokyo, pp. 661–668.

    Google Scholar 

  • Mooney HA, Chiariello NR. 1984. The study of plant function—the plant as a balanced system. In: Perspectives On Plant Population Ecology, Dirzo R and J Sarukhdn (eds). Sinaucr Associates Inc., Sunderland, MA, pp. 305–323.

    Google Scholar 

  • Mooney HA, Bonicken TM, Christensen NL. Lotan JE, Reiners WA (eds). 1981. Fire Regimes and Ecosystems Properties. General Technical Report WO-26.

    Google Scholar 

  • Mooney HA, Kummerow J, Johnson AW, Parsons DJ, Keeley S, Hoffmann A, Hays RI, Giliberto J, Chu C. 1997. The producers—Their resources and adaptive responses. In: Convergent Evolution in Chile and California, Mooney HA (ed.) Dowden, Hutchinson & Ross Inc., Stroudsburg, pp. 85–143.

    Google Scholar 

  • Mullette KJ, Bamber RK. 1978. Studies of the lignotubers of Eucalyptus gum- mifera (Gaert. & Horchr.). Ill Inheritance and chemical composition. Aust J Bot 26:23– 28.

    Article  CAS  Google Scholar 

  • Norby RJ, O’Neill EG, Luxmoore RJ. 1986. Effects of atmospheric C02 cnrich- mcnt on the growth and mineral nutrition of Quercus alba seedlings in nutrient- poor soil. Plant Physiology 82: 83–89.

    Article  CAS  Google Scholar 

  • Oberbauer SF, Sionit N, Hastings SJ, Oechel WC. 1986. Effects of C02 enrich-ment and nutrition on growth, photosynthesis, and nutrient concentration of Alaskan tundra plant species. Can J Bot 64: 2993–2998.

    Article  CAS  Google Scholar 

  • Oechel WC, Lawrence L. 1981. Carbon allocation and utilization. In: Resource Use by Chaparral and Matorral, Miller PC (ed). Springer-Verlag. Berlin, pp. 185–235.

    Google Scholar 

  • Oechel WC, Strain BR. 1985. Native species responses to increased atmospheric C02 concentration. In: Direct Effects of Increasing Carbon Dioxide on Vegetation. Strain BR and JD Cure (eds). U.S. DOE. Nat. Tech. Info. Service, Springfield, VA, pp. 117–154.

    Google Scholar 

  • Pate JS, Frocnd RH, Bowen BJ, Hansen A, Kuo J. 1990. Seedling growth and storage characteristics of seeder and resproutcr species of Mediterranean-type ecosystems of S.W. Australia. Ann Bot 65: 585–601.

    Google Scholar 

  • Pearcy RW, Björkmann O, Caldwell MM, Keeley JE, Monson RK, Strain BR. 1987. Carbon gain by plants in natural environments. BioScience 37:21–29.

    Google Scholar 

  • Peet MM. Willits DH. 1984. C02 enrichment of greenhouse tomatoes using a closed-loop heat storage: effects of cultivar and nitrogen. Scicntia Horticulture 24: 21–32.

    Article  Google Scholar 

  • Raper CD. Parson LR. Patterson DT. Kramer P. 1977. Relationship between growth and nitrogen accumulation for vegetative cotton and sovbean plants. Bot Gaz 138: 129–137.

    Article  CAS  Google Scholar 

  • Rapp M, Cabanettes A. 1981. Biomass and productivity of a Pinus pinea L. stand. In: Components of Productivity of Mediterranean-Climate Regions— Basic and Applied Aspects, Margaris NS and HA Mooney (eds). Dr. W. Junk Publishers, The Hague, pp. 131–134.

    Google Scholar 

  • Rapp M, Lossaint P. 1981. Some aspects of mineral cycling in the garrigue of southern France. In: Mediterranean-Type Shrublands, di Castri F, DW Goodall, and RL Specht (eds). Elsevier Scientific Publishing Company, Amsterdam, pp. 289–301.

    Google Scholar 

  • Reynolds JF. 1986. Adaptive strategics of desert shrubs with spccial reference to the creosotebush. In: Pattern and Process in Desert Ecosystems, Whitford WG (ed). University of New Mexico Press, Albuquerque. NM. pp. 19–49.

    Google Scholar 

  • Reynolds JF, Thornley JHM. 1982. A shoot:root partitioning model. Ann Bot 49: 585–597.

    Google Scholar 

  • Richards D, Goubran FH, Collins KE. 1979. Root-shoot equilibria in fruiting tomato plants. Ann Bot 43: 401–404.

    Google Scholar 

  • Rodin LF., Bazilevich NI. 1967. Production and Mineral Cycling in Terrestrial Vegetation. Oliver and Boyd. Edinburgh.

    Google Scholar 

  • Rundel PW. 1988a. Leaf structure and nutrition in Mediterranean-climate sclero- phylls. In: Mediterranean-Type ccosystems. A Data Source Book, Speht RL (ed). Kluwer Academic Publishers, Dordrecht, pp. 157–167.

    Google Scholar 

  • Rundel PW. 1988b. Vegetation, nutrition and climate-data tables. (2) Foliar analyses. In: Mediterranean-Type Ecosystems. A Data Source Book, Speht RL (ed). Kluwer Academic Publishers, Dordrecht, pp. 63–80.

    Google Scholar 

  • Rundel PW, Parsons DJ. 1979. Structural changes in chamise (Adenostoma fasciculatum) along a fire-induced age gradient. J Range Manage 32:462– 466.

    Article  Google Scholar 

  • Schlesinger DH, Gill DS. 1980. Biomass. production and changes in the availability of light, water and nutrient during the development of pure stands of the chaparral shrub. Ceanothiis megacarpiis, after fire. Ecology 61: 781–789.

    Article  Google Scholar 

  • Schrader LE. 1978. Uptake, accumulation, assimilation and transport of nitrogen in higher plants. In: Nitrogen in the Environment, Vol 2, Nielson DR and JG MacDonald (eds). Academic Press. New York. pp. 101–141.

    Google Scholar 

  • Specht RL, Rayson P. 1957. Dark Island Heath (Ninety-Mile Plain, south Australia). III. The root systems. Aust J Bot 5: 103–114.

    Article  Google Scholar 

  • Specht RL, Rundel PW. 1990. Sclerophylly and foliar nutrient status of Mediter-ranean-climate plant communities in southern Australia. Aust J Bot 38:459– 474.

    Article  Google Scholar 

  • Specht RL, Rayson P, Jackman ME. 1958. Dark Island Heath (Ninety-Mile Plain, south Australia). VI. Pyric succession: changes in composition, coverage, dry weight and mineral nutrient status. Aust J Bot 6: 59–88.

    Article  Google Scholar 

  • Strain BR. 1985. Physiological and ecological controls on carbon sequestering in ecosystems. Biogeochemistry 1: 219–232.

    Article  Google Scholar 

  • Thomas RB, Strain BR. 1991. Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. Plant Physiol 96: 627–634.

    Article  CAS  Google Scholar 

  • Thornley JHM. 1972. A balanced quantitative model for root:shoot ratios in vegetative plants. Ann Bot 36: 431–441.

    Google Scholar 

  • Thornley JHM. 1976. Mathematical Models in Plant Physiology. 318 pp. Academic Press, London.

    Google Scholar 

  • Weatherley PE. 1982. Water uptake and llow in roots. In: Physiological Plant Ecology II: Water Relations and Carbon Assimilation, Lange OL, PS Nobel, CB Osmond, and H Ziegler (eds). Springer-Verlag, Berlin, Heidelberg. New York, pp. 79–109.

    Google Scholar 

  • Whittaker RH. 1962. Net production relations of shrubs in the Great Smoky mountains. Ecology 43: 357–377.

    Article  Google Scholar 

  • Whittaker RH. Marks PL. 1975. Methods of assessing terrestrial productivity. In: Primary Productivity of the Biosphere, Lieth H and RH Whittaker (eds). Springer-Verlag. Berlin, pp. 55–118.

    Google Scholar 

  • Whittaker RH, Bormann FH, Likens GE, Siccama TG. 1974. The Hubbard Brook ecosystem study: forest biomass and production. Ecol Monog 44:233– 252.

    Article  Google Scholar 

  • Williams WE, Garbutt K, Bazzaz FA. Vitousek PM. 1986. The response of plants to elevated C02. IV. Two deciduous-forest tree communities. Oecologia 69: 454–459.

    Article  Google Scholar 

  • Wilson JB. 1988. A review of evidence on the control on shoot:root ratio, in relation to models. Ann Bot 61: 433–449.

    Google Scholar 

  • Wilson JR. 1975. Comparative response to nitrogen deficiency of a tropical and temperate grass in the interrelation between photosynthesis, growth and the accumulation of non-structural carbohydrate. Neth J Agric Sei 23: 104–112.

    CAS  Google Scholar 

  • Wong SC. 1979. Elevated atmospheric partial pressure of C02 and plant growth. I. Interactions of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants. Oecologia 44:68– 74.

    Article  Google Scholar 

  • Zammit C. 1988. Dynamics of resprouting in the lignotuberous shrub Banksia ablongifolia. Aust J Ecol 13: 311–320.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Hilbert, D.W., Canadell, J. (1995). Biomass Partitioning and Resource Allocation of Plants from Mediterranean-Type Ecosystems: Possible Responses to Elevated Atmospheric CO2 . In: Moreno, J.M., Oechel, W.C. (eds) Global Change and Mediterranean-Type Ecosystems. Ecological Studies, vol 117. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4186-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4186-7_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8690-5

  • Online ISBN: 978-1-4612-4186-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics