Skip to main content

Direct Effects of Elevated CO2 in Chaparral and Mediterranean-Type Ecosystems

  • Chapter
Global Change and Mediterranean-Type Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 117))

Abstract

Atmospheric CO2 has increased by about 25% since the beginning of the industrial revolution, and is currently rising by about 1.8ppm per year (Waston et al., 1990). The concentration at the end of the next century will depend both on human use of fossil fuels and the response of natural ecosystems, and could range from 450 ppm CO2 to more than 800 ppm CO2 (Waston et al., 1990). Although the specific nature and regional pattern are uncertain, climate change associated with increases in atmospheric CO2 and other greenhouse-active gases is generally expected (Folland et al., 1992). For much of the contiguous U.S., this may translate to higher temperatures and decreasing soil moisture (Mitchell et al., 1990). In the chaparral of southern California, higher temperatures are likely to result in increased evapotranspiration, and if precipitation does not increase markedly, available soil moisture should decrease (Rind et al., 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bazzaz FA. 1990. The response of natural ecosystems to the rising global C02 levels. Ann Rev Ecol Syste 21: 167–196.

    Article  Google Scholar 

  • Bazzaz FA, Carlson RW. 1984. The response of plants to elevated C02. I. Competition among an assemblage of annuals at two levels of soil moisture. Oecologia 62: 196–198.

    Article  Google Scholar 

  • Bazzaz FA, Colman JS, Morse SR. 1990. Growth responses of seven major co- occurring tree species of the northeastern United States to elevated C02. Can J For Res 20: 1479–1484.

    Article  CAS  Google Scholar 

  • Bentley B. 1992. The effects of increased atmospheric CO2 on Lupinus and its herbivores. Am J Bot Supple 79: 59–60.

    Google Scholar 

  • Carlson RW. Bazzaz FA. 1982. Photosynthetic and growth response to fumigation with S02 at elevated C02 for C3 and C4 plants. Oecologia 54: 188–193.

    Article  Google Scholar 

  • di Castri F. 1981. Mediterranean shrublands of the world. In: di Castri F, DW Goodall. and RL Specht (eds). Ecosystems of the World 11: Mediterranean- type Shrublands. Elsevier Scientific Publishing Co., Amsterdam. The Netherlands.

    Google Scholar 

  • Coyne PI, Bingham GE. 1977. Carbon dioxide correlation with oxidant air pollution in the San Bernardino mountains of California. J Air Pollution Control Assoc 27: 782–784.

    CAS  Google Scholar 

  • Ehleringer J. 1989. Temperature and energy budgets. Pages 117–136 in Pearcy RW, J Ehlcringer, HA Mooney, and PW Rundel (eds). Plant Physiological Ecology: Field Methods and Instrumentation. Chapman and Hall, New York.

    Google Scholar 

  • Ellis BA, Kummerow J. 1988. N2(C2H2-C2H4) fixation in two species of Ceanothus seedlings in second year postfire chaparral. Plant Soil 109: 207–213.

    Article  CAS  Google Scholar 

  • Field CB. Mooney HA. 1986. The photosynthesis-nitrogen relationship in wild plants. In: Givnish TJ (ed). On The Economy of Plant Form and Function. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Folland CK, Karl TR. Nicholls N. Nyenzi BS, Parker DE, Vinnikov K Ya. 1992. Observed climate variability and change. Pages 135–170 in Houghton JT, BA Callander, and SK Varney (eds). Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment. WMO/UNEP. Cambridge University Press, New York.

    Google Scholar 

  • Gifford RM. 1979. Growth and yield of C02-enriched wheat under water-limited conditions. Aust J Plant Physiol. 6: 367–369.

    Article  Google Scholar 

  • Gluckman CH. Oechel WC. 1992. The effects of atmospheric CO2 and drought on the nutrient relations of Quercus agrifolia. 43rd AIBS Annual Meeting, Honolulu, Hawaii, 9–13 August, 1992.

    Google Scholar 

  • Groisman PY, Karl TR, Knight RW. 1994. Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science 263: 198–200.

    Article  CAS  Google Scholar 

  • Hanes TL. 1971. Succession after fire in the chaparral of southern California. Ecol Monogr 41: 27–52.

    Article  Google Scholar 

  • Hinkson CL, Oechel WC. Asymbiotic nitrogen fixation in association with Quercus agrifolia and responses to elevated atmospheric C02 (in manuscript, n. d.).

    Google Scholar 

  • Hogan KP. Smith AP. Zizka LH. 1991. Potential effects of elevated C02 and changes in temperature on tropical plants. Plant Cell Environ 14: 763–778.

    Article  Google Scholar 

  • Le Houerou HN. 1981. Man and ecosystems. In: di Castri F, DW Goodall, and RL Specht (eds). Ecosystems of the World 11: Mediterranean-type Shrub- lands. Elsevier Scientific Publishing Co., Amsterdam, The Netherlands.

    Google Scholar 

  • Idso SB, Kimball BA, Anderson MG, Mauney JR. 1987. Effects of atmospheric C02 enrichment on plant growth: the interactive role of air temperature. Agric Ecosystems Environ 20: 1–10.

    Article  Google Scholar 

  • Jenkins MA. 1993. Effect of atmospheric C02 level and water stress on growth and physiology of two species of chaparral shrubs. MSc. Thesis. San Diego State University, San Diego. CA.

    Google Scholar 

  • Jenkins MA, Oechel WC. 1991. Effect of atmospheric C02 level and water stress on growth and physiology of two species of chaparral shrubs. 42nd Annual Meeting of the Ecological Society of America, San Antonio, Texas. 4–8 August. 1991. Abstract Bull Ecol Soc Amer 71: 154.

    Google Scholar 

  • Keeley J, Keeley S. 1988. Chaparral. In: Barbour MG and WC Billings (eds). North American Terrestrial Vegetation. Cambridge University Press.

    Google Scholar 

  • Kummerow J. Krause D. Jow W. 1978. Seasonal changes of fine root density in the southern California chaparral. Occologia 37: 201–212.

    Article  Google Scholar 

  • Larcher W. 1980. Plant Physiological Ecology. 2nd edition. Springer-Verlag, Berlin. Germany. 303 pages.

    Google Scholar 

  • Larigauderie A, Hilbert DW, Oechel WC. 1988. Effect of C02 enrichment and nitrogen availability on resource acquisition and resource allocation processes in a grass, Bromus mollis. Oecologia 77: 544–549.

    Article  Google Scholar 

  • Luxmoore RJ. 1981. C02 and phytomass. Bioscience 31: 626.

    Article  Google Scholar 

  • Marion GM. 1987. Use of nitrogen-15 to assess terrestrial nitrogen cycling processes. Pages 129–155 in Tenhunen JD (ed). Plant Response to Stress. Springer-Verlag. Berlin.

    Google Scholar 

  • Marion GM. Kummerow J. Miller PC. 1981. Predicting nitrogen mineralization in chaparral soils. Soil Sei Soc Am J 45: 956–961.

    Article  CAS  Google Scholar 

  • Melillo JM, Callaghan TV. Woodward FI. Salati E. Sinha SK. 1990. Effects on Ecosystems. In: Houghton JT, GJ Jenkins, and JJ F.Phraums (eds). Climate Change, The IPCC Scientific Assessment. Cambridge University Press, Cambridge. UK.

    Google Scholar 

  • Mitchell JFB, Manabe S, Meleshko V, Tokioka T. 1990. Equilibrium climate change and its implications for the future. In: Houghton JT, GJ Jenkins, and JJ Ephraums (eds). Climate Change, The IPCC Scientific Assessment. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Mooney HA. Drake BG. Luxmoore RJ. Oechel WC, Pitelka LF. 1991. Predicting ecosystem responses to elevated C02 concentrations. Bioscience 41: 96–104.

    Article  Google Scholar 

  • Norby RJ, O’Neill EG, Luxmoore RJ. 1986a. Effects of atmospheric C02 enrichment on the growth and mineral nutrition of Quercus alba seedlings in nutrient- poor soil. Plant Physiol 82: 83–89.

    Article  CAS  Google Scholar 

  • Norby RJ, Pastor J, Melillo JM. 1986b. Carbon-nitrogen interactions in C02- enriched white oak: physiological and long-term perspectives. Tree Physiol 2: 233–241.

    CAS  Google Scholar 

  • Oberbauer SF, Sionit N, Hastings SJ, Oechel WC. 1986. Effects of C02 enrichment and nutrition on growth, photosynthesis and nutrient concentration of Alaskan tundra species. Can J Bot 64: 2993–2998.

    Article  CAS  Google Scholar 

  • Oechel WC, Billings WD. 1992. Anticipated effects of global change on carbon balance of arctic plants and ecosystems. Pages 139–168 in Chapin FS III, R Jefferies, J Reynolds, G Shaver, and J Svoboda (eds). Arctic Physiological Processes in a Changing Climate. Academic Press, New York.

    Google Scholar 

  • Oechel WC, Strain B. 1985. Response of native species and ecosystems. In: Direct Effects of Increasing Carbon Dioxide on Vegetation. Department of Energy DOE/ER-0238.

    Google Scholar 

  • Oechel WC, Lawrence W, Mustafa J, Martinez J. 1981. Energy and carbon acquisition. Pages 151–183 in Miller PC (ed). Resource Use by Chaparral and Matorral. Springer-Verlag, New York.

    Google Scholar 

  • Oechel WC, Riechers G, Lawrence WT. Prudhomme TI, Grulke N. Hastings SJ. 1992. “C02LT”, A closed, null-balance system for long-term in xitue ecosystem manipulation and measurement of C02 level, CO2 flux, and temperature. Functional Ecol. 6: 86–100.

    Article  Google Scholar 

  • Poth M. 1982. Biological dinitrogen fixation in chaparral. Pages 285–290 in Conrad CE and WC Oechel (eds). Proceedings of the Symposium on Dynamics and Management of Mediterranean-type Ecosystems (June 22–26, 1981). Pacific Southwest Forest and Range Experiment Station. Berkeley, CA.

    Google Scholar 

  • Riggan PJ, Dunn PH. 1982. Harvesting chaparral biomass for energy—an environmental assessment. Pages 149–157 in Conrad CE and WC Oechel (eds). Proceedings of the Symposium on Dynamics and Management of Mediterranean-type Ecosystems, San Diego State University. San Diego, CA.

    Google Scholar 

  • Riggan PJ, Goode S, Jacks PM, Lockwood RN, 1988. Interaction of fire and community development in chaparral of southern California. Ecol Monog 58(3):155–176.

    Article  Google Scholar 

  • Rind D, Goldberg R. Hansen J, Rosenzweig C, Ruedy R. 1990. Potential evapotranspiration and the likelihood of future drought. J Geophysical Res 95: 9983–10004.

    Article  Google Scholar 

  • Rogers HH, Runion GB, Krupa SV. 1994. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ Pollut 83: 155–189.

    Article  CAS  Google Scholar 

  • Shaver GR, Billings WD, Chapin FS III, Giblin AE, Nadelhoffer KJ, Oechel WC, Rastetter EB. 1992. Global change and the carbon balance of arctic ecosystems. Bioscience 42: 433–441.

    Article  Google Scholar 

  • Sparks SR, Oechel WC, Mauffete Y. 1993. Photosynthate allocation patterns along a fire-induced age sequence in two shrub species from the California chaparral. Int J Wildland Fire 3: 21–30.

    Article  Google Scholar 

  • Sprent JI. 1987. The Ecology of the Nitrogen Cycle. Cambridge University Press, Cambridge. UK. 151 pages.

    Google Scholar 

  • Strain BR. 1992. Field measurements of C02 enhancement and change in natural vegetation. Water Air Soil Pollut 64: 45–60.

    Article  CAS  Google Scholar 

  • Strain BR, Bazzaz F. 1983. Terrestrial plant communities. Pages 177–222 in Lemon ER (ed). C02 and Plants: The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide. A A AS Selected Symposium 84. Westview Press. Inc., Boulder. CO2.

    Google Scholar 

  • Tolley LC, Strain BR. 1984. Effects of C02 enrichment on growth of Liqiiidambar styraciflua and Pinus taeda seedlings under different irradiance levels. Can J For Res 14:343– 350.

    Article  Google Scholar 

  • Tolley LC, Strain BR. 1985. Effects of C02 enrichment and water stress on gas exchange of Liquidambar styraciflua and Pinus taeda seedlings grown under different irradiance levels. Oecologia 65: 166–172.

    Article  Google Scholar 

  • Tyrrel RK. 1982. Chaparral in southern California. Pages 56–59 in Conrad CE and WC Oechel (cds). Proceedings of the Symposium on Dynamics and Management of Mediterranean-type Ecosystems, San Diego State University, San Diego, CA.

    Google Scholar 

  • Watson RT, Rodhe H, Oeschger H. Siegenthaler U. 1990. Greenhouse gases and aerosols. In: Houghton JT, GJ Jenkins, and JJ Ephraums (eds). Climate Change, The IPCC Scientific Assessment. Cambridge University Press, Cambridge. UK.

    Google Scholar 

  • Williams WE, Garbutt K, Bazzaz FA. Vitousek PM. 1986. The response of plants to elevated C02: IV. Two deciduous-forest tree communities. Oecologia 69: 454–459.

    Google Scholar 

  • Wray SM, Strain BR. 1986. Response of two old field perennials to interactions of C02 enrichment and water stress. Am J Bot 73: 1486–1491.

    Article  Google Scholar 

  • Youngner VB, Kesner WD, Berg AR, Green LR. 1972. Progress report of the Maloney Canyon greenbelt project. Contract No. 140. University of California Water Resources Center.

    Google Scholar 

  • Zinke PJ. 1969. Nitrogen storage of several California forest soil-vegetation systems. Pages 40–53 in Biology and Ecology of Nitrogen. National Academy of Sciences, Washington, DC.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Oechel, W.C., Hastings, S.J., Vourlitis, G.L., Jenkins, M.A., Hinkson, C.L. (1995). Direct Effects of Elevated CO2 in Chaparral and Mediterranean-Type Ecosystems. In: Moreno, J.M., Oechel, W.C. (eds) Global Change and Mediterranean-Type Ecosystems. Ecological Studies, vol 117. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4186-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4186-7_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8690-5

  • Online ISBN: 978-1-4612-4186-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics