Soil Organic Matter in Mediterranean-Type Ecosystems and Global Climatic Changes: A Case Study—The Soils of the Mediterranean Basin

  • P. Bottner
  • M. M. Coûteaux
  • V. R. Vallejo
Part of the Ecological Studies book series (ECOLSTUD, volume 117)

Abstract

On a worldwide basis, the soil organic carbon pool is around two to three times the amount of carbon stored in the atmosphere and two to three times that stored in the terrestrial biomass (Bohn, 1982; Rozanov, 1990; Scharpenseel and Becker-Heidmann, 1990). The sensitivity of Soil organic matter (SOM) to climate change raises two essential questions. Are the soils going to be a source or a sink of atmospheric CO2 in direct or indirect responses to the predicted physical or chemical climate change? The SOM is the major regulating factor of nutrient availability in the ecosystem; therefore the second question is to know to what extent the climate changes will modify the stabilization- mineralization balance of the nutrients by modifying the SOM turnover rates.

Keywords

Biomass Clay Hydroxide Lignin Sandstone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtay GL, Ketner P, Duvigneaud P. 1979. Terrestrial primary production and phytomass. In: Bolin B, Degens ET, Kcmpc S, Ketner P, eds. The Global Carbon Cycle, SCOPE 13, 491p: 129–171.Google Scholar
  2. Anderson JM. 1991. The effects of climate change on décomposition processes in grassland and coniferous forests. Ecol Appl 1 (3): 326–347.CrossRefGoogle Scholar
  3. Bach W. 1988. Development of climatic scenarios from general circulation models. In: Parry ML, Carter TR, Konijn NT, eds. The Impact of Climatic Variations on Agriculture, Sect 4: 125–158. Kluwer, Dordrecht. The Netherlands.Google Scholar
  4. Berg B, Ekbohm G. 1991. Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in Scots pine forest. VII. Can J Bot 69: 1449–1456.CrossRefGoogle Scholar
  5. Bertrand M, Janati-Idrissi A, Lumaret JP. 1987. Etude expérimentale des facteurs de variation de la consommation de la litière de Quercus ilex L. et Q. pubescens Willd. par Glomeris marginala (V.) (Diplopoda. Glomeridae ). Rev Ecol Biol Sol 24: 359–368.Google Scholar
  6. Billes G. Rouhier H. Bottner P. 1993. Modifications of the carbon and nitrogen allocations in the plant-soil system, in response to increased atmospheric CO2 concentration. Plant Soil 157: 215–225.CrossRefGoogle Scholar
  7. Bohn HL. 1982. Estimate of organic carbon in world soils: II. Soil Sei Soc Am J 46: 1118–1119.CrossRefGoogle Scholar
  8. Bolin B. 1986. The carbon cycle and predictions for the future. In: Bolin B, Döös BR. Jäger J. Waerwick RA. eds. The Greenhouse Effect, Climate Change and Ecosystems. SCOPE 29: 93–156. John Wiley & Sons, Chichester, UK.Google Scholar
  9. Bottner P. 1981. Evolutions des sols et conditions bioclimatiques méditerranéennes. Ecol Mediterr 8: 115–134.Google Scholar
  10. Bottner P. 1985. Response of microbial biomass to alternate moist and dry conditions in a soil incubated with 14C and,15N-labelled plant material. Soil Biol Biochem 17: 329–337.CrossRefGoogle Scholar
  11. Bottner P. Pcyronel A. 1977. Dynamique de la matière organique dans deux sols méditerranéens étudiée à partir de techniques de datation par le radiocarbone. Rev Ecol Biol Sol 14: 385–393.Google Scholar
  12. Bouwman AF. 1990. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: Bouwman AF, ed. Soils and the Greenhouse Effect. John Wiley Sons. Chichester. UK, pp. 62–191.Google Scholar
  13. Brinkman R, Brammer H. 1990. The influence of a changing climate on soil properties. Transactions 14th International Congress of Soil Science (Kyoto) Vol V: 283–288.Google Scholar
  14. Buringh P. 1984. Organic carbon in soils of the world. In: Woodwell GW, ed. The Role of Terrestrial Vegetation in the Global Cycle, SCOPE 23: 91–109. John Wiley & Sons. Chichester, UK.Google Scholar
  15. Canadell J. Rodá F. 1989. Biomasa y mincralomasa subterránea del encinar de la Castanya, Montseny. Options Méditerranéennes. Série Séminaire 3: 13–18.Google Scholar
  16. Cannell MGR. 1982. World Forest Biomass and Primary Production Data. Academic Press, London.Google Scholar
  17. Coûteaux MM. Mousseau M. Célérier ML, Bottner P. 1991. Increased atmospheric C02 and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities. Oikos 61: 54–64.CrossRefGoogle Scholar
  18. Dickinson RE. 1986. The climate system and modelling of future climate. In: Bolin BR, Döös BR, Jäger J. Waerwick RA. eds. The Greenhouse Effect, Climate Change and Ecosystems. SCOPE 29: 207–271. John Wiley & Sons, Chichester, UK.Google Scholar
  19. Franz EH. 1990. Potential influence of climatic change on soil organic matter and tropical agroforestry. In: Scharpenseel HW, Shomaker M, Ayoub A, eds. Soil on a Warmer Earth. Elsevier, p. 274.Google Scholar
  20. Hereter A. 1990. Els sols forestals del Massis Montscny. Tesi doctoral, Universitat de Barcelona, Barcelona, Spain.Google Scholar
  21. Le Houérou HN. 1990. Global change: vegetation, ecosystems and land use in the Southern Mediterranean Basin by the mid twenty-first century. Israel J Bot 39: 481–508.Google Scholar
  22. Le Houérou HN, Popov GF. 1981. An ecoclimatic classification of inter-tropical Africa. Plant production and protection paper No. 31. FAO. Rome.Google Scholar
  23. Luxmoore RJ. 1981. C02 and phytomass. Bioscience 31: 626.CrossRefGoogle Scholar
  24. Meentemeyer V. 1984. The geography of organic matter decomposition rates. Ann Assoc Am Geographers 74: 551–560.CrossRefGoogle Scholar
  25. Merckx R. Dijkastra A. Den Hartog A, Van Veen JA. 1987. Production of root- derived material and associated microbial growth in soil at different nutrient levels Biol Fert Soils 5: 126–132.Google Scholar
  26. Naveh Z, Lieberman AS. 1984. Landscape ecology. Springer-Verlag, New York.Google Scholar
  27. Parton WJ, Schimel DS, Cole CV, Ajima DS. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51: 1173–1179.CrossRefGoogle Scholar
  28. Post WM. Emanuel WR. Zinke PJ. Stangenberger AG. 1982. Soil carbon pools and world life zones. Nature 298: 156–159.CrossRefGoogle Scholar
  29. Pouget M. 1980. Les relations sol-vegetation dans les steppes sud-algéroises. Trav et doc ORSTOM, F-93140 BONDY, 553 p.Google Scholar
  30. Rozanov BG. 1990. Human impacts on evolution of soils under various conditions of the world. Transactions 14th ICSS Plenary Papers, 53–62 Kyoto.Google Scholar
  31. Scharpenseel HW, Becker-Heidmann P. 1990. Overview of the greenhouse effect. Global change syndrome; general outlook. In: Scharpenseel HW, Schomaker M, Ayoub A, eds. Soil on a Warmer Earth. Elsevier, 274 p.Google Scholar
  32. Schleser GH. 1982. The response of C02 evolution from soils to global temperature changes. Z Naturforsch 37a: 287–291.Google Scholar
  33. Schlesinger WH. 1984. Soil organic carbon: a source of atmospheric C02. In: Woodwcll GM, ed. The Role of Terrestrial Vegetation in the Global Carbon cycle: Measurement by remote sensing. SCOPE 23: 111–131. John Wiley & Sons, Chichester, UK.Google Scholar
  34. Vallejo VR. 1983. Los suelos forestales de la depresion Central Catalana. Thesis doctoral, Univesitat de Barcelona, Barcelona, Spain.Google Scholar
  35. Van Veen JA, Paul A. 1981. Organic carbon dynamics in grassland soils. I. Background information and computer simulation. Can J Soil Sci 61: 185–201.CrossRefGoogle Scholar
  36. Vogt KA. Grier CC. Vogt DJ. 1989. Production turnover, and nutrient dynamics of above- and below-ground detritus of world forests. Adv Ecol Res 15: 303–307.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1995

Authors and Affiliations

  • P. Bottner
  • M. M. Coûteaux
  • V. R. Vallejo

There are no affiliations available

Personalised recommendations