Skip to main content

Equivariant Derived Categories, Zuckerman Functors and Localization

  • Chapter
Geometry and Representation Theory of Real and p-adic groups

Part of the book series: Progress in Mathematics ((PM,volume 158))

Abstract

In this paper we revisit some now classical constructions of modern representation theory: Zuckerman’s cohomological construction and the localization theory of Bernstein and Beilinson. These constructions made an enormous impact on our understanding of representation theory during the last decades (see, for example, [19]). Our present approach and interest is slightly different than usual. We approach these constructions from the point of view of a student in homological algebra and not representation theory. Therefore, we drop certain assumptions natural from the point of view of representation theorists and stress some unifying principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Beilinson, J. Bernstein, Localisation de g-modules, C. R. Acad. Sci. Paris, Ser. I 292 (1981), 15–18.

    MathSciNet  MATH  Google Scholar 

  2. A. Beilinson, J. Bernstein, A generalization of Casselman’s submodule theorem, Representation Theory of Reductive Groups (P.C. Trombi, ed.), Progress in Math., vol. 40, Birkhäuser, Boston, 1983, pp. 35–52.

    Google Scholar 

  3. A. Beilinson, J. Bernstein, A proof of the Jantzen conjecture, (preprint) (1989).

    Google Scholar 

  4. J. Bernstein, V. Lunts, Equivariant sheaves and functors, Lecture Notes in Math., vol. 1578, Springer-Verlag, Berlin-Heidelberg-Tokyo, 1994.

    Google Scholar 

  5. J. Bernstein, V. Lunts, Localization for derived categories of (g, K)-modules, Journal of Amer. Math. Soc. 8 (1995), 819–856.

    MathSciNet  MATH  Google Scholar 

  6. F. Bien, V-modules and spherical representations, Mathematical Notes, vol. 39, Princeton University Press, Princeton, N.J., 1990.

    Google Scholar 

  7. A. Borel, N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Math. Studies, vol. 94, Princeton University Press, 1980.

    Google Scholar 

  8. P. Deligne, Cohomologie à supports propres, SGA 4, Lecture Notes in Math., vol. 305, Springer-Verlag, Berlin-Heidelberg-Tokyo, 1973.

    Google Scholar 

  9. M. Duflo, M. Vergne, Sur le functeur de Zuckerman, C. R. Acad. Sci. Paris 304 (1987), 467–469.

    MathSciNet  MATH  Google Scholar 

  10. S. I. Gelfand, Yu.I. Manin, Methods of homological algebra, Springer-Verlag, Berlin, Heidelberg, New York, 1996.

    MATH  Google Scholar 

  11. H. Hecht, D. Miliĉić, W. Schmid, J. A. Wolf, Localization and standard modules for real semisimple Lie groups I: The duality theorem, Inventiones Math. 90 (1987), 297–332.

    Article  MATH  Google Scholar 

  12. H. Hecht, D. Miliĉić, On the cohomological dimension of the localization functor, Proc. Amer. Math. Soc. 108 (1990), 249–254.

    Article  MATH  Google Scholar 

  13. D. Miliĉić, Localization and representation theory of reductive Lie groups, (mimeographed notes), to appear.

    Google Scholar 

  14. D. Miliĉić, Algebraic D-modules and representation theory of semisimple Lie groups, Analytic Cohomology and Penrose Transform (M. Eastwood, J.A. Wolf, R. Zierau, eds.), Contemporary Mathematics, vol. 154, Amer. Math. Soc., 1993, pp. 133–168.

    Google Scholar 

  15. D. Milicic, P. Pandzic, Cohomology of standard Harish-Chandra sheaves, (in preparation).

    Google Scholar 

  16. D. Mumford, Geometric invariant theory, Ergebnisse der Mathematik, vol. 34, Springer-Verlag, Berlin, Heidelberg, New York, 1965.

    Google Scholar 

  17. P. Pandzic, Equivariant analogues of Zuckerman functors, Ph.D. Thesis, University of Utah, Salt Lake City, 1995.

    Google Scholar 

  18. J.L. Verdier, Catégories dérivées, état 0, SGA 4½, Lecture Notes in Math., vol. 569, Springer-Verlag, Berlin, Heidelberg, New York, 1977.

    Google Scholar 

  19. D.A. Vogan, Representations of real reductive Lie groups, Progress in Math., vol. 15, Birkhäuser, Boston, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Birkhäuser Boston

About this chapter

Cite this chapter

Miličić, D., Pandžić, P. (1998). Equivariant Derived Categories, Zuckerman Functors and Localization. In: Tirao, J., Vogan, D.A., Wolf, J.A. (eds) Geometry and Representation Theory of Real and p-adic groups. Progress in Mathematics, vol 158. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4162-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4162-1_12

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8681-3

  • Online ISBN: 978-1-4612-4162-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics