Skip to main content

The Rat Aorta Model of Angiogenesis and Its Applications

  • Chapter
Vascular Morphogenesis: In Vivo, In Vitro, In Mente

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

Research in angiogenesis has flourished in recent years thanks to ground-breaking discoveries in cell and molecular biology. Experimental studies have opened the field to clinical applications raising new hopes for patients with angiogenesis-dependent disorders. Several clinical trials with inhibitors of angiogenesis are now in progress while scores of academic laboratories and pharmaceutical companies are trying to identify key molecular events in the angiogenic process for targeted therapeutic intervention (Folkman, 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auerbach R., Auerbach W., Polakowski I. (1991): Assays of angiogenesis: a review. Pharmac Ther 51:1–11.

    Article  Google Scholar 

  • Bagavandoss P., Wilks J.W. (1990): Specific inhibition of endothelial cell proliferation by thrombospondin. Biochem Biophys Res. Commun 170:867–872.

    CAS  Google Scholar 

  • Ben Ezra D., Griffin B.W., Maftzir G., Aharonov O. (1993): Thrombospondin and in vivo angiogenesis induced by basic fibroblast growth factor or lipopolysaccharide. Invest Ophthalmol Sci 34:3601–3608.

    CAS  Google Scholar 

  • Bowersox J.C., Sorgente N. (1982): Chemotaxis of aortic endothelial cells in response to fibronectin. Cancer Res 42:2547–2551.

    PubMed  CAS  Google Scholar 

  • Brooks PC., Clark R.A., Cheresh D.A. (1994): Requirement of vascular integrin avb3 for angiogenesis. Science 264:569–571.

    Article  PubMed  CAS  Google Scholar 

  • Cozzolino F., Torcia M., Aldinucci D., Ziche M., Almerigogna F., Bani D., Stern D.M. (1990): Interleukin 1 as autocrine regulator of endothelial cell growth. Proc Natl Acad Sci USA 87:6487–6491.

    Article  PubMed  CAS  Google Scholar 

  • Diglio C.A., Grammas P., Giacomelli F., Wiener J. (1989): Angiogenesis in rat aorta ring explant cultures. Lab Invest 60:523–531.

    PubMed  CAS  Google Scholar 

  • Elsdale T., Bard J. (1972): Collagen substrata for studies of cell behavior. J Cell Biol 54:626–637.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J. (1995): Clinical applications of research on angiogenesis. New Eng J Med 333(26): 1757–1763.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J. (1996): Fighting cancer by attacking its blood supply: What you need to know about cancer. Scientific Am 275:150–154.

    Article  CAS  Google Scholar 

  • Good D.J., Polverini P.J., Rastinejad F., LeBeau M.M., Lemons R.S., Frazier W.A., Bouck N.P. (1990): A tumor-suppressor dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87:6624–6628.

    Article  PubMed  CAS  Google Scholar 

  • Hayman E.G., Pierschbacher M.D., Ruoslahti E. (1985): Detachment of cells from culture substrate with soluble fibronectin peptides. J Cell Biol 100:1948–1954.

    Article  PubMed  CAS  Google Scholar 

  • Ingber D., Folkman J. (1988): Inhibition of angiogenesis through modulation of collagen metabolism. Lab Invest 59:44–51.

    PubMed  CAS  Google Scholar 

  • Ingber D.E., Madri J.A., Folkman J. (1986): A possible mechanism for inhibition of angiogenesis by angiostatic steroids: induction of capillary basement membrane dissolution. Endocrinology 119:1768–1774.

    Article  PubMed  CAS  Google Scholar 

  • Iruela-Arispe M.L., Bornstein P., Sage H. (1990): Thrombospondin exerts an anti-angiogenic effect on cord formation by endothelial cells in vitro. Proc Natl Acad Sci USA 88: 5026–5030.

    Article  Google Scholar 

  • Jackson C.J., Jenkins K.L. (1991): Type I collagen fibrils promote rapid vascular tube formation upon contact with the apical side of cultured endothelium. Exp Cell Res 192:319–323.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki S., Mori M., Awai M. (1989) Capillary growth of rat aortic segments cultured in collagen without serum. Acta Pathol Japonica 39(11):712–718.

    CAS  Google Scholar 

  • Knedler A., Ham R. (1987): Optimized medium for clonal growth of human microvascular endothelial cells with minimal serum. In Vitro Cell Dev Biol 23:481–91.

    Google Scholar 

  • Kubota Y., Kleinman H.K., Martin G.R., et al. (1988): Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1598.

    Article  PubMed  CAS  Google Scholar 

  • Leung D.W., Cachianes G., Kuang W.J., Goeddel D.V., Ferrara N. (1989): Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309.

    Article  PubMed  CAS  Google Scholar 

  • Madri J.A., Williams S.K. (1983): Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol 97:153–165.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R., Orci L., Vassalli R (1983): In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol 97:1648–1652.

    Article  PubMed  CAS  Google Scholar 

  • Nicosia R.F., Tchao R., Leighton J. (1982): Histotypic angiogenesis in vitro: light microscopic, ultrastructural, and radioautographic studies. In Vitro 18:538–549.

    Google Scholar 

  • Nicosia R.F., Tchao R., Leighton J. (1983): Angiogenesis-dependent tumor spread in reinforced fibrin clot culture. Cancer Res 43:2159–2166.

    PubMed  CAS  Google Scholar 

  • Nicosia R.F., Madri, J.A. (1987): The microvascular extracellular matrix: developmental changes during angiogenesis in the aortic-ring plasma clot model. Am J Pathol 128:78–90.

    PubMed  CAS  Google Scholar 

  • Nicosia R.F., Ottinetti A. (1990a): Modulation of microvascular growth and morphogenesis by reconstituted basement membrane-like gel in three-dimensional culture of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell Dev Biol 26:119–128.

    Google Scholar 

  • Nicosia R.F., Ottinetti A. (1990b): Growth of microvessels in serum-free matrix culture of rat aorta: a quantitative assay of angiogenesis in vitro. Lab Invest 63:115–122.

    PubMed  CAS  Google Scholar 

  • Nicosia R.F., Bonanno E. (1991): Inhibition of angiogenesis in vitro by arg-gly-asp-containing synthetic peptide. Am J Pathol 138:829–833.

    PubMed  CAS  Google Scholar 

  • Nicosia R.F., Belser P., Bonanno E., Diven J. (1991): Regulation of angiogenesis in vitro by collagen metabolism. In Mtro Cell Dev Biol 27A:961–966.

    Google Scholar 

  • Nicosia R.F., Bonanno E., Villaschi S. (1992): Large-vessel endothelium switches to a microvascular phenotype during angiogenesis in collagen gel culture of rat aorta. Atherosclerosis 95:191–199.

    Article  PubMed  CAS  Google Scholar 

  • Nicosia R.F., Bonanno E., Smith M. (1993): Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. J Cell Physiol 154:654–661.

    Article  PubMed  CAS  Google Scholar 

  • Nicosia R.F., Tuszynski G. (1994): Matrix-bound thrombospondin promotes angiogenesis in vitro. J Cell Biol 124:183–193.

    Article  PubMed  CAS  Google Scholar 

  • Nicosia R.F., Villaschi S., Smith M. (1994a): Isolation and characterization of vasoformative endothelial cells from the rat aorta. In Mtro Cell Dev Biol 30A:394–399.

    Google Scholar 

  • Nicosia R.F., Bonanno E., Yurchenco P. (1994b): Modulation of angiogenesis in vitro by lamininentactin complex. Dev Biol 164:197–206.

    Article  PubMed  CAS  Google Scholar 

  • Nicosia R.F., Nicosia S.V., Smith M. (1994c): Vascular endothelial growth factor, platelet derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol 145:1023–1029.

    PubMed  CAS  Google Scholar 

  • Nicosia R.F., Villaschi S. (1995): Rat aortic smooth muscle cells become pericytes during angiogenesis in vitro. Lab Invest 73(5):658–666.

    PubMed  CAS  Google Scholar 

  • Nicosia R.F., Lin Y.J., Hazelton D., Quian X. (1996): Role of vascular endothelial growth factor in the rat aorta model of angiogenesis. J Vise Res (Abstracts IX International Vascular Biology Meeting) 33(S1):73.

    Google Scholar 

  • Nissanov J., Tuman R.W., Graver L.M., Fortunato J.M. (1995): Automatic vessel segmentation and quantification of the rat aortic ring assay of angiogenesis. Lab Invest 73:734–739.

    PubMed  CAS  Google Scholar 

  • Pepper M.S., Vassalli J.D., Orci L., Montesano R. (1993): Biphasic effect of transforming growth factor beta 1 on in vitro angiogenesis. Exp Cell Res 204:356–363.

    Article  PubMed  CAS  Google Scholar 

  • Piershbacher M.D., Ruoslahti E. (1984): Cell attachment activity can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33.

    Article  Google Scholar 

  • RayChaudhury A., D’Amore P.A. (1991): Endothelial cell regulation by transforming growth factor beta. J Cell Biochem 47:224–229.

    Article  PubMed  CAS  Google Scholar 

  • Sato N., Tsuroka N., Yamamoto M., Nishihara T., Goto T. (1991): Identification of non-heparin binding endothelial cell growth factor from rat myofibroblasts. EXS 61:179–187.

    Google Scholar 

  • Sato N., Beitz J.G., Kato J., Yamamoto M., Clark J.W., Calabresi P., Frackelton R., Jr. (1993): Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am J Pathol 4:1119–1130.

    Google Scholar 

  • Taraboletti G., Belotti D., Giavazzi R. (1992): Thrombospondin modulates basic fibroblast growth factor activities on endothelial cells. EXS 61:210–213.

    PubMed  CAS  Google Scholar 

  • Villaschi S., Nicosia R.F. (1993): Angiogenic role of basic fibroblast growth factor released by rat aorta after injury. Am J Pathol 143:182–190.

    Google Scholar 

  • Villaschi S., Nicosia R.F., Smith M. (1994a): Isolation of a morphologically and functionally distinct muscle cell type from the intimal aspect of the normal rat aorta. Evidence for smooth muscle cell heterogeneity. In Mtro Cell Dev Biol 30A:589–595.

    Google Scholar 

  • Villaschi S., Nicosia R.F. (1994b): Paracrine interactions between fibroblasts and endothelial cells in a serum-free co-culture model: modulation of angiogenesis and collagen gel contraction. Lab Invest 71:291–299.

    PubMed  CAS  Google Scholar 

  • Vukicevic S., Kleinman H.K., Luyten F.P., Roberts A.B., Roche N.S., Reddi A.H. (1992): Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res 202:1–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser

About this chapter

Cite this chapter

Nicosia, R.F. (1996). The Rat Aorta Model of Angiogenesis and Its Applications. In: Little, C.D., Mironov, V., Sage, E.H. (eds) Vascular Morphogenesis: In Vivo, In Vitro, In Mente. Cardiovascular Molecular Morphogenesis. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4156-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4156-0_9

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8678-3

  • Online ISBN: 978-1-4612-4156-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics