The Rat Aorta Model of Angiogenesis and Its Applications

  • Roberto Francesco Nicosia
Part of the Cardiovascular Molecular Morphogenesis book series (CARDMM)


Research in angiogenesis has flourished in recent years thanks to ground-breaking discoveries in cell and molecular biology. Experimental studies have opened the field to clinical applications raising new hopes for patients with angiogenesis-dependent disorders. Several clinical trials with inhibitors of angiogenesis are now in progress while scores of academic laboratories and pharmaceutical companies are trying to identify key molecular events in the angiogenic process for targeted therapeutic intervention (Folkman, 1996).


Aortic Ring Plasma Clot Angiogenic Response Endogenous Growth Factor Aortic Explants 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auerbach R., Auerbach W., Polakowski I. (1991): Assays of angiogenesis: a review. Pharmac Ther 51:1–11.CrossRefGoogle Scholar
  2. Bagavandoss P., Wilks J.W. (1990): Specific inhibition of endothelial cell proliferation by thrombospondin. Biochem Biophys Res. Commun 170:867–872.Google Scholar
  3. Ben Ezra D., Griffin B.W., Maftzir G., Aharonov O. (1993): Thrombospondin and in vivo angiogenesis induced by basic fibroblast growth factor or lipopolysaccharide. Invest Ophthalmol Sci 34:3601–3608.Google Scholar
  4. Bowersox J.C., Sorgente N. (1982): Chemotaxis of aortic endothelial cells in response to fibronectin. Cancer Res 42:2547–2551.PubMedGoogle Scholar
  5. Brooks PC., Clark R.A., Cheresh D.A. (1994): Requirement of vascular integrin avb3 for angiogenesis. Science 264:569–571.PubMedCrossRefGoogle Scholar
  6. Cozzolino F., Torcia M., Aldinucci D., Ziche M., Almerigogna F., Bani D., Stern D.M. (1990): Interleukin 1 as autocrine regulator of endothelial cell growth. Proc Natl Acad Sci USA 87:6487–6491.PubMedCrossRefGoogle Scholar
  7. Diglio C.A., Grammas P., Giacomelli F., Wiener J. (1989): Angiogenesis in rat aorta ring explant cultures. Lab Invest 60:523–531.PubMedGoogle Scholar
  8. Elsdale T., Bard J. (1972): Collagen substrata for studies of cell behavior. J Cell Biol 54:626–637.PubMedCrossRefGoogle Scholar
  9. Folkman J. (1995): Clinical applications of research on angiogenesis. New Eng J Med 333(26): 1757–1763.PubMedCrossRefGoogle Scholar
  10. Folkman J. (1996): Fighting cancer by attacking its blood supply: What you need to know about cancer. Scientific Am 275:150–154.CrossRefGoogle Scholar
  11. Good D.J., Polverini P.J., Rastinejad F., LeBeau M.M., Lemons R.S., Frazier W.A., Bouck N.P. (1990): A tumor-suppressor dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87:6624–6628.PubMedCrossRefGoogle Scholar
  12. Hayman E.G., Pierschbacher M.D., Ruoslahti E. (1985): Detachment of cells from culture substrate with soluble fibronectin peptides. J Cell Biol 100:1948–1954.PubMedCrossRefGoogle Scholar
  13. Ingber D., Folkman J. (1988): Inhibition of angiogenesis through modulation of collagen metabolism. Lab Invest 59:44–51.PubMedGoogle Scholar
  14. Ingber D.E., Madri J.A., Folkman J. (1986): A possible mechanism for inhibition of angiogenesis by angiostatic steroids: induction of capillary basement membrane dissolution. Endocrinology 119:1768–1774.PubMedCrossRefGoogle Scholar
  15. Iruela-Arispe M.L., Bornstein P., Sage H. (1990): Thrombospondin exerts an anti-angiogenic effect on cord formation by endothelial cells in vitro. Proc Natl Acad Sci USA 88: 5026–5030.CrossRefGoogle Scholar
  16. Jackson C.J., Jenkins K.L. (1991): Type I collagen fibrils promote rapid vascular tube formation upon contact with the apical side of cultured endothelium. Exp Cell Res 192:319–323.PubMedCrossRefGoogle Scholar
  17. Kawasaki S., Mori M., Awai M. (1989) Capillary growth of rat aortic segments cultured in collagen without serum. Acta Pathol Japonica 39(11):712–718.Google Scholar
  18. Knedler A., Ham R. (1987): Optimized medium for clonal growth of human microvascular endothelial cells with minimal serum. In Vitro Cell Dev Biol 23:481–91.Google Scholar
  19. Kubota Y., Kleinman H.K., Martin G.R., et al. (1988): Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1598.PubMedCrossRefGoogle Scholar
  20. Leung D.W., Cachianes G., Kuang W.J., Goeddel D.V., Ferrara N. (1989): Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309.PubMedCrossRefGoogle Scholar
  21. Madri J.A., Williams S.K. (1983): Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol 97:153–165.PubMedCrossRefGoogle Scholar
  22. Montesano R., Orci L., Vassalli R (1983): In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol 97:1648–1652.PubMedCrossRefGoogle Scholar
  23. Nicosia R.F., Tchao R., Leighton J. (1982): Histotypic angiogenesis in vitro: light microscopic, ultrastructural, and radioautographic studies. In Vitro 18:538–549.Google Scholar
  24. Nicosia R.F., Tchao R., Leighton J. (1983): Angiogenesis-dependent tumor spread in reinforced fibrin clot culture. Cancer Res 43:2159–2166.PubMedGoogle Scholar
  25. Nicosia R.F., Madri, J.A. (1987): The microvascular extracellular matrix: developmental changes during angiogenesis in the aortic-ring plasma clot model. Am J Pathol 128:78–90.PubMedGoogle Scholar
  26. Nicosia R.F., Ottinetti A. (1990a): Modulation of microvascular growth and morphogenesis by reconstituted basement membrane-like gel in three-dimensional culture of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell Dev Biol 26:119–128.Google Scholar
  27. Nicosia R.F., Ottinetti A. (1990b): Growth of microvessels in serum-free matrix culture of rat aorta: a quantitative assay of angiogenesis in vitro. Lab Invest 63:115–122.PubMedGoogle Scholar
  28. Nicosia R.F., Bonanno E. (1991): Inhibition of angiogenesis in vitro by arg-gly-asp-containing synthetic peptide. Am J Pathol 138:829–833.PubMedGoogle Scholar
  29. Nicosia R.F., Belser P., Bonanno E., Diven J. (1991): Regulation of angiogenesis in vitro by collagen metabolism. In Mtro Cell Dev Biol 27A:961–966.Google Scholar
  30. Nicosia R.F., Bonanno E., Villaschi S. (1992): Large-vessel endothelium switches to a microvascular phenotype during angiogenesis in collagen gel culture of rat aorta. Atherosclerosis 95:191–199.PubMedCrossRefGoogle Scholar
  31. Nicosia R.F., Bonanno E., Smith M. (1993): Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. J Cell Physiol 154:654–661.PubMedCrossRefGoogle Scholar
  32. Nicosia R.F., Tuszynski G. (1994): Matrix-bound thrombospondin promotes angiogenesis in vitro. J Cell Biol 124:183–193.PubMedCrossRefGoogle Scholar
  33. Nicosia R.F., Villaschi S., Smith M. (1994a): Isolation and characterization of vasoformative endothelial cells from the rat aorta. In Mtro Cell Dev Biol 30A:394–399.Google Scholar
  34. Nicosia R.F., Bonanno E., Yurchenco P. (1994b): Modulation of angiogenesis in vitro by lamininentactin complex. Dev Biol 164:197–206.PubMedCrossRefGoogle Scholar
  35. Nicosia R.F., Nicosia S.V., Smith M. (1994c): Vascular endothelial growth factor, platelet derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol 145:1023–1029.PubMedGoogle Scholar
  36. Nicosia R.F., Villaschi S. (1995): Rat aortic smooth muscle cells become pericytes during angiogenesis in vitro. Lab Invest 73(5):658–666.PubMedGoogle Scholar
  37. Nicosia R.F., Lin Y.J., Hazelton D., Quian X. (1996): Role of vascular endothelial growth factor in the rat aorta model of angiogenesis. J Vise Res (Abstracts IX International Vascular Biology Meeting) 33(S1):73.Google Scholar
  38. Nissanov J., Tuman R.W., Graver L.M., Fortunato J.M. (1995): Automatic vessel segmentation and quantification of the rat aortic ring assay of angiogenesis. Lab Invest 73:734–739.PubMedGoogle Scholar
  39. Pepper M.S., Vassalli J.D., Orci L., Montesano R. (1993): Biphasic effect of transforming growth factor beta 1 on in vitro angiogenesis. Exp Cell Res 204:356–363.PubMedCrossRefGoogle Scholar
  40. Piershbacher M.D., Ruoslahti E. (1984): Cell attachment activity can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33.CrossRefGoogle Scholar
  41. RayChaudhury A., D’Amore P.A. (1991): Endothelial cell regulation by transforming growth factor beta. J Cell Biochem 47:224–229.PubMedCrossRefGoogle Scholar
  42. Sato N., Tsuroka N., Yamamoto M., Nishihara T., Goto T. (1991): Identification of non-heparin binding endothelial cell growth factor from rat myofibroblasts. EXS 61:179–187.Google Scholar
  43. Sato N., Beitz J.G., Kato J., Yamamoto M., Clark J.W., Calabresi P., Frackelton R., Jr. (1993): Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am J Pathol 4:1119–1130.Google Scholar
  44. Taraboletti G., Belotti D., Giavazzi R. (1992): Thrombospondin modulates basic fibroblast growth factor activities on endothelial cells. EXS 61:210–213.PubMedGoogle Scholar
  45. Villaschi S., Nicosia R.F. (1993): Angiogenic role of basic fibroblast growth factor released by rat aorta after injury. Am J Pathol 143:182–190.Google Scholar
  46. Villaschi S., Nicosia R.F., Smith M. (1994a): Isolation of a morphologically and functionally distinct muscle cell type from the intimal aspect of the normal rat aorta. Evidence for smooth muscle cell heterogeneity. In Mtro Cell Dev Biol 30A:589–595.Google Scholar
  47. Villaschi S., Nicosia R.F. (1994b): Paracrine interactions between fibroblasts and endothelial cells in a serum-free co-culture model: modulation of angiogenesis and collagen gel contraction. Lab Invest 71:291–299.PubMedGoogle Scholar
  48. Vukicevic S., Kleinman H.K., Luyten F.P., Roberts A.B., Roche N.S., Reddi A.H. (1992): Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res 202:1–8.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser 1996

Authors and Affiliations

  • Roberto Francesco Nicosia
    • 1
  1. 1.Department of Pathology and Laboratory MedicineAllegheny University of the Health SciencesBroad & Vine, PhiladelphiaUSA

Personalised recommendations