Skip to main content

Three-Dimensional In Vitro Assay of Endothelial Cell Invasion and Capillary Tube Morphogenesis

  • Chapter
Vascular Morphogenesis: In Vivo, In Vitro, In Mente

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

The establishment and maintenance of a vascular supply is an absolute requirement for the growth of normal and neoplastic tissues and, as might be expected, the cardiovascular system is the first organ system to develop and to become functional during embryogenesis. Both during development and in postnatal life, all blood vessel begin as simple endothelial-lined capillaries. Although some remain as capillaries, many of these newly-formed vessels develop into larger vessels through the concentric addition of smooth muscle cells and fibroblasts. Capillary blood vessels are formed by two processes: (a) vasculogenesis, in which a primary capillary plexus is formed from endothelial cells which differentiate in situ from mesodermal precursors, and (b) angiogenesis, the formation of new capillary blood vessels by a process of sprouting from preexisting vessels (Risau et al., 1988; Pardenaud et al., 1989). While both processes are required for formation of the vascular system during embryonic development, neovascularization which occurs in postnatal life is attributed to angiogenesis. In adult tissues, capillary proliferation is tightly controlled, and occurs in female reproductive organs (e.g., in the corpus luteum and regenerating endometrium), in the placenta and mammary gland during pregnancy, during exercise-induced muscle hypertrophy, in the wound healing process and in response to tissue hypoxia associated with vessel occlusion. Angiogenesis may however be detrimental to the organism. This occurs in pathological conditions such as proliferative retinopathy and juvenile hemangioma. Angiogenesis is also necessary for the continued growth of solid tumors, and allows for the hematogenous dissemination of tumor cells and the formation of metastases (reviewed by Folkman and Shing, 1992; Rak et al., 1993; Fidler and Ellis, 1994; Folkman, 1995a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander C.A., Werb Z. (1991): Extracellular matrix degradation. In: Cell Biology of Extracellular Matrix, 2nd ed. Hay E.D., ed., New York: Plenum Press, pp. 255–302.

    Chapter  Google Scholar 

  • Alexander H.R., Billingsley K.G., Block M.I., Fraker D.L. (1994): D-factor/leukemia inhibitory factor: evidence for its role as a mediator in acute and chronic inflammatory disease. Cytokine 6:589–596.

    Article  PubMed  CAS  Google Scholar 

  • Anand-Apte B., Pepper M.S., Bao L., Smith R.C., Voest E., Iwata K., Montesano R., Olsen B., Murphy G., Apte S.S., Zetter B. (1997): Inhibition of angiogenesis and tumor growth by tissue inhibitor of metalloproteinase-3 (TIMP-3), a matrix bound TIMP. Invest Ophtalmol Vis Sci 38:817–823.

    CAS  Google Scholar 

  • Andrade S.P., Fan T-P.D., Lewis G.P. (1987): Quantitative in vivo studies on angiogenesis in a rat sponge model. Br J Exp Path 68:755–766.

    CAS  Google Scholar 

  • Aruffo A., Stamenkovic I., Mulnick M., Underhill C.B., Seed B. (1990): CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313.

    Article  PubMed  CAS  Google Scholar 

  • Asahara T., Bauters C., Zheng L.P., Takeshita S., Bunting S., Ferrara N., Symes J.F., Isner J-M. (1995): Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 92 (Suppl II):II-365-II-371.

    CAS  Google Scholar 

  • Ausprunk D.H. (1986): Distribution of hyaluronic acid and sulfated glycosaminoglycans during blood-vessel development in the chick chorioallantoic membrane. Am J Anat 177: 313–331.

    Article  PubMed  CAS  Google Scholar 

  • Ausprunk D.H., Folkman J. (1977): Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during angiogenesis. Microvasc Res 14:53–65.

    Article  PubMed  CAS  Google Scholar 

  • Ausprunk D.H., Boudreau C.L., Nelson D.A. (1981): Proteoglycans in the microvasculature. II. Histochemical localization in proliferating capillaries of the rabbit cornea. Am J Pathol 103:367–375.

    PubMed  CAS  Google Scholar 

  • Baird A., Durkin T. (1986): Inhibition of endothelial cell proliferation by type β-transforming growth factor: interactions with acidic and basic fibroblast growth factors. Biochem Biophys Res Commun 138:476–182.

    Article  PubMed  CAS  Google Scholar 

  • Baird A., Klagsbrun M. (1991): The fibroblast growth factor family. Cancer Cells 3:239–243.

    PubMed  CAS  Google Scholar 

  • Banerjee S.D., Toole B.P. (1991): Monoclonal antibody to chick embryo hyaluronan-binding protein: changes in distribution of binding during early brain development. Dev Biol 146: 186–197.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S.D., Toole B.P. (1992): Hyaluronan-binding protein in endothelial cell morphogenesis. J Cell Biol 119:643–652.

    Article  PubMed  CAS  Google Scholar 

  • Basilico C., Moscatelli D. (1992): The FGF family of growth factors and oncogenes. Adv Cancer Res 59:115–165.

    Article  PubMed  CAS  Google Scholar 

  • Battegay E., Rupp J., Iruela-Arispe L., Sage E.H., Pech M. (1994): PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGFβ-receptors. J Cell Biol 125:917–928.

    Article  PubMed  CAS  Google Scholar 

  • Bautch V.L., Toda S., Hassell J.A., Hanahan D. (1987): Endothelial cell tumors develop in transgenic mice carrying polyoma virus middle T oncogene. Cell 51:529–538.

    Article  PubMed  CAS  Google Scholar 

  • Bertrand P., Girard N., Delpech B., Duval C., D’Anjour J., Dance J.P. (1992): Hyaluronan (hyaluronic acid) and hyaluronectin in the extracellular matrix of human breast carcinomas. Int J Cancer 52:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Boudreau N., Turley E.A., Rabinovitch M. (1991): Fibronectin, hyaluronan and hyaluronan binding protein contribute to increased ductus arteriosus smooth muscle cell migration. Dev Biol 143:235–247.

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon L.Y.W., Lokeshwar V.B., He J., Chen X., Bourguignon G.J. (1992): A CD44-like endothelial cell transmembrane glycoprotein (GP 116) interacts with extracellular matrix and ankyrin. Mol Cell Biol 12:4464–1471.

    PubMed  CAS  Google Scholar 

  • Breier G., Albrecht U., Sterrer S., Risau W. (1992): Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114:521–532.

    PubMed  CAS  Google Scholar 

  • Canfield A.E., Schor A.M. (1995): Evidence that tenascin and thrombospondin-1 modulate sprouting of endothelial cells. J Cell Sci 108:797–809.

    PubMed  CAS  Google Scholar 

  • Culty M., Miyake K., Kincaide P.W., Silorski E., Butcher E., Underhill A.M. (1990): The hyaluronate receptor is a member of the CD44 (H-CAM) family of cell surface glycoproteins. J Cell Biol 111:2765–2774.

    Article  PubMed  CAS  Google Scholar 

  • Deroanne C.F., Colige A.C., Nusgens B.V., Lapiere C.M. (1996): Modulation of expression and assembly of vinculin during in vitro fibrillar collagen-induced angiogenesis and its reversal. Exp Cell Res. 224:215–223.

    Article  PubMed  CAS  Google Scholar 

  • Dharmsathaporn K., Madara J.L. (1990): Established intestinal cell lines as model systems for electrolyte transport studies. Meth Enzymol 192:354–389.

    Article  Google Scholar 

  • Dvorak H.F., Brown L.F., Detmar M., Dvorak A.M. (1995): Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability and angiogenesis. Am J Pathol 146:1029–1039.

    PubMed  CAS  Google Scholar 

  • Faham S., Hileman R.E., Fromm J.R., Lindhart R.J., Rees D.C. (1996): Heparin structure and interactions with basic fibroblast growth factor. Science 271:1116–1120.

    Article  PubMed  CAS  Google Scholar 

  • Fajardo L.F., Kowalski J., Kwan H.H., Prionas S.D., Allison A.C. (1988): The disc angiogenesis system. Lab Invest 58:718–724.

    PubMed  CAS  Google Scholar 

  • Feinberg R.N., Beebe D.L. (1983): Hyaluronate in vasculogenesis. Science 220:1177–1179.

    Article  PubMed  CAS  Google Scholar 

  • Fenderson B.A., Stamenkovic I., Aruffo A. (1993): Localization of hyaluronan in mouse embryos during implantation, gastrulation and organogenesis. Differentiation 54:85–98.

    PubMed  CAS  Google Scholar 

  • Ferrara N. (1995): The role of vascular endothelial growth factor in pathological angiogenesis. Breast Cancer Res Treat 36:127–137.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N., Houck K., Jackeman L., Leung D.W. (1992a): Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocrine Rev 13:18–35.

    CAS  Google Scholar 

  • Ferrara N., Winer J., Henzel W.J. (1992b): Pituitary follicular cells secrete an inhibitor of aortic endothelial cell growth: identification as leukemia inhibitory factor. Proc Natl Acad Sci USA 89:698–702.

    Article  PubMed  CAS  Google Scholar 

  • Fidler I.J., Ellis L.M. (1994): The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79:185–188.

    Article  PubMed  CAS  Google Scholar 

  • Fisher C., Gilberston-Beadling S., Powers E.A., Petzold G., Poorman R., Mitchell M.A. (1994): Interstitial collagenase is required for angiogenesis in vitro. Dev Biol 162:499–510.

    Article  PubMed  CAS  Google Scholar 

  • Flaumenhaft R., Abe M., Mignatti P., Rifkin D.B. (1992): Basic fibroblast growth factor-induced activation of latent transforming growth factor beta in endothelial cells: regulation of plasminogen activator activity. J Cell Biol 118:901–909.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J. (1971): Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J. (1995a): Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nature Med 1:27–31.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J. (1995b): Clinical applications of research on angiogenesis. N Engl J Med 333: 1757–1763.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J., Haudenschild C. (1980): Angiogenesis in vitro. Nature 288:551–555.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J., Klagsbrun M. (1987): Angiogenic factors. Science 235:442–447.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J., Shing Y. (1992): Angiogenesis. J Biol Chem 267:10931–10934.

    PubMed  CAS  Google Scholar 

  • Fotsis T., Pepper M., Adlercreutz H., Fleischmann G., Hase T., Montesano R., Schweigerer L.(1993): Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci USA 90:2690–2694.

    Article  PubMed  CAS  Google Scholar 

  • Fotsis T., Zhang Y., Pepper M.S., Adlercreutz H., Montesano R., Nawroth P.P., Schweigerer L.(1994): The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumor growth. Nature 368:237–239.

    Article  PubMed  CAS  Google Scholar 

  • Fotsis T., Pepper M.S., Aktas E., Rasku S., Adlercreutz H., Wähälä K., Montesano R., Schweigerer L. (1997): Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res 57:2916–2921.

    PubMed  CAS  Google Scholar 

  • Fràter-Schröder M., Müller G., Birchmeier W., Böhlen P. (1986): Transforming growth factor-beta inhibits endothelial cell proliferation. Biochem Biophys Res Commun 137:295–302.

    Article  PubMed  Google Scholar 

  • Gajdusek C.M., Luo Z., Mayberg M.R. (1993): Basic fibroblast growth factor and transforming growth factor beta-1: synergistic mediators of angiogenesis in vitro. J Cell Physiol 157: 133–144.

    Article  PubMed  CAS  Google Scholar 

  • Gimbrone M.A., Jr, Cotran R.S., Leapman S.B., Folkman J. (1974): Tumor growth and neovas-cularization: an experimental model using the rabbit cornea. J Natl Cancer Inst 52: 413–427.

    PubMed  Google Scholar 

  • Goto M., Goto K., Weindel K., Folkman J. (1993): Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab Invest 69:508–517.

    PubMed  CAS  Google Scholar 

  • Grant D.S., Tashiro K.I., Segui-Real B., Yamada Y., Martin G.R., Kleinman H.K. (1989): Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58:933–943.

    Article  PubMed  CAS  Google Scholar 

  • Gross J.L., Moscatelli D., Jaffe E.A., Rifkin D.B. (1982): Plasminogen activator and collagenase production by cultured capillary endothelial cells. J Cell Biol 95:974–981.

    Article  PubMed  CAS  Google Scholar 

  • Hall C.L., Wang C., Lange L.A., Turley E.A. (1994): Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity. J Cell Biol 126:575–588.

    Article  PubMed  CAS  Google Scholar 

  • Hardwick C., Hoare K., Owens R., Hohn H.P., Hook M., Moore D., Cripps V., Austen L., Nance D.M., Turley E.A. (1992): Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility. J Cell Biol 117:1343–1350.

    Article  PubMed  CAS  Google Scholar 

  • Heimark R.L., Twardzik D.R., Schwartz S.M. (1986): Inhibition of endothelial regeneration by type-beta transforming growth factor from platelets. Science 233:1078–1080.

    Article  PubMed  CAS  Google Scholar 

  • Hilton D.J. (1992): LIF: lots of interesting functions. Trends Biochem Sci 17:72–76.

    Article  PubMed  CAS  Google Scholar 

  • Höckel M., Schienger K., Doctrow S., Kissel T., Vaupel P. (1993): Therapeutic angiogenesis. Arch Surg 128:423–429.

    PubMed  Google Scholar 

  • Ingber D.E., Folkman J. (1989): Mechano-chemical switching between growth and differentiation during growth factor-stimulated angiogenesis in vitro: role of the extracellular matrix. J Cell Biol 109:317–330.

    Article  PubMed  CAS  Google Scholar 

  • Iozzo R. (1985): Proteoglycans: structure, function, and role in neoplasia. Lab Invest 53:373–396.

    PubMed  CAS  Google Scholar 

  • Iruela-Arispe M.L., Sage E.H. (1993): Endothelial cells exhibiting angiogenesis in vitro proliferate in response to TGF-β1. J Cell Biochem 52:414–430.

    Article  CAS  Google Scholar 

  • Iruela-Arispe M., Hasselaar P., Sage H. (1991): Differential expression of extracellular proteins is correlated with angiogenesis in vitro. Lab Invest 64:174–186.

    PubMed  CAS  Google Scholar 

  • Kim K.J., Li B., Winer J., Armanini M., Gillett N., Phillips H.S., Ferrara N. (1993): Inhibition of vascular endothelial growth factor induced angiogenesis suppresses tumor growth in vivo. Nature 362:841–844.

    Article  PubMed  CAS  Google Scholar 

  • Klagsbrun M., D’Amore P. (1991): Regulators of angiogenesis. Annu Rev Physiol 53:217–239.

    Article  PubMed  CAS  Google Scholar 

  • Klagsbrun M., Soker S. (1993): VEGF/VPF: the angiogenic factor found? Curr Biol 3:699–702.

    Article  PubMed  CAS  Google Scholar 

  • Klagsbrun M., Knighton D., Folkman J. (1976): Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res 36:110–114.

    PubMed  CAS  Google Scholar 

  • Knudson C.B., Knudson W. (1993): Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J 7:1233–1241.

    PubMed  CAS  Google Scholar 

  • Knudson W., Biswas C., Li X.Q., Nemee R.E., Toole B.P. (1989): The role and regulation of tumor-associated hyaluronan. In: The Biology of Hyaluronan, Ciba Foundation Symposium, Vol. 143. Evered D., Whelau J., eds., Chichester: John Wiley and Sons, pp. 150–169.

    Google Scholar 

  • Kubota Y., Kleinman H.K., Martin G.R., Lawley T.J. (1988): Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1598.

    Article  PubMed  CAS  Google Scholar 

  • Kujawa M.J., Carrino D.A., Caplan A.I. (1986a): Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture. Dev Biol 144:519–528.

    Article  Google Scholar 

  • Kujawa M., Pechak D.G., Fiszman M.Y., Caplan A.I. (1986b): Hyaluronic acid bonded to cell culture surfaces inhibits the program of myogenesis. Dev Biol 113:10–16.

    Article  PubMed  CAS  Google Scholar 

  • Laaroubi K., Delbé J., Vacherot P., Desgranges P., Tardieu M., Jaye M., Barritault D., Courty J. (1994): Mitogenic and in vitro angiogenic activity of human recombinant heparin affin regulatory peptide. Growth Factors 10:89–98.

    Article  PubMed  CAS  Google Scholar 

  • Lane T.F., Iruela-Arispe M.L., Johnson R.S., Sage E.H. (1994): SPARC is a source of copper-binding peptides that stimulate angiogenesis. J Cell Biol 125:929–943.

    Article  PubMed  CAS  Google Scholar 

  • Laurent T.C., Fraser J.R.E. (1992): Hyaluronan. FASEB J 6:2397–2404.

    PubMed  CAS  Google Scholar 

  • Lees V.C., Fan T-P.D., West D.C. (1995): Angiogenesis in a delayed revascularization model is accelerated by angiogenic oligosaccharides of hyaluronan. Lab Invest 73:259–266.

    PubMed  CAS  Google Scholar 

  • Leibovich S.J., Polverini J., Shepard H.M., Wiseman D.M., Shively V., Nuseir N. (1987): Macrophage-induced angiogenesis is mediated by tumour necrosis faetor-α. Nature 329:630–632.

    Article  PubMed  CAS  Google Scholar 

  • Liotta L.A., Steeg P.S., Stetler-Stevenson W.G. (1991): Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64:327–366.

    Article  PubMed  CAS  Google Scholar 

  • Liu D., Pearlman E., Diaconu E., Guo K., Mori H., Haqqi T., Markowitz S., Willson G., Sy M-S. (1996): Expression of hyaluronidase by tumor cells induces angiogenesis in vivo. Proc Natl Acad Sci USA 93:7832–7837.

    Article  PubMed  CAS  Google Scholar 

  • Lokeshwar V.B., Lokeshwar B.L., Pham H.T., Block N.L. (1996): Association of elevated levels of hyaluronidase, a matrix-degrading enzyme, with prostate cancer progression. Cancer Res 56:651–657.

    PubMed  CAS  Google Scholar 

  • Maciag T., Kadish J., Wilkins L., Stemerman M.B., Weinstein R. (1982): Organizational behavior of human umbilical vein endothelial cells. J Cell Biol 94:511–520.

    Article  PubMed  CAS  Google Scholar 

  • Madri J.A., Williams S.K. (1983): Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol 97:153–165.

    Article  PubMed  CAS  Google Scholar 

  • Madri J.A., Pratt B.M. (1988): Angiogenesis. In: The Molecular and Cellular Biology of Wound Repair. Clark R.A.F., Henson P.M., eds., New York: Plenum Press, pp. 337–358.

    Google Scholar 

  • Madri J.A., Pratt B.M., Tucker A.M. (1988): Phenotypic modulation of endothelial cells by transforming growth factor-β depends on the composition and organization of the extracellular matrix. J Cell Biol 106:1357–1384.

    Article  Google Scholar 

  • Mandriota S.J., Pepper M.S. (1997): Vascular endothelial growth factor-induced in vitro angiogenesis and plasminogen activator expression are dependent on endogenous basic fibroblast growth factor. J. Cell Sci 110:2293–2302.

    PubMed  CAS  Google Scholar 

  • Mandriota S.J., Seghezzi G., Vassalli J-D., Ferrara N., Wasi S., Mazzieri R., Mignatti P., Pepper M.S. (1995): Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells. J Biol Chem 270:9709–9716.

    Article  PubMed  CAS  Google Scholar 

  • Mandriota S.J., Menoud P-A., Pepper M.S. (1996): Transforming browth factor β1 down-regulates vascular endothelial growth factor receptor-2/flk-l expression in vascular endothelial cells. J Biol Chem 271:11500–11505.

    Article  PubMed  CAS  Google Scholar 

  • Mawatari M., Okamura K., Matsuda T., Hamanaka R., Mizoguchi H., Higashio K., Kohno K., Kuwano M. (1991): Tumor necrosis factor and epidermal growth factor modulate migration of human microvascular endothelial cells and production of tissue-type plasminogen activator and its inhibitor. Exp Cell Res 192:574–580.

    Article  PubMed  CAS  Google Scholar 

  • Merwin J.R., Anderson J.M., Kocher O., van Itallie C.M., Madri J.A. (1990): Transforming growth factor-β1 modulates extracellular matrix organization and cell-cell junctional complex formation during in vitro angiogenesis. J Cell Physiol 142:117–128.

    Article  PubMed  CAS  Google Scholar 

  • Mignatti P., Rifkin D.B. (1996): Plasminogen activators and angiogenesis. In: Current Topics in Microbiology and Immunology, Vol.213–1: Attempts to Understand Metastasis Formation Günthert U, Birchmeier W, eds., Berlin and Heidelberg: Springer Verlag, pp. 31–49.

    Google Scholar 

  • Mignatti P., Tsuboi R., Robbins E., Rifkin D.B. (1989): In vitro angiogenesis on the human amniotic membrane: requirements for basic fibroblast growth factor-induced proteases. J Cell Biol 108:671–682.

    Article  PubMed  CAS  Google Scholar 

  • Millauer B., Wizigman-Voos S., Schnürch H., Martinez R., Møller N.P.H., Risau W., Ullrich A. (1993): High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846.

    Article  PubMed  CAS  Google Scholar 

  • Millauer B., Shawver L.K., Plate K.H., Risau W., Ullrich A. (1994): Glioblastoma growth inhibited in vivo by a dominant negative Flk-1 mutant. Nature 367:576–579.

    Article  PubMed  CAS  Google Scholar 

  • Miyake K., Underhill C.B., Lesley J., Kincaide PW. (1990): Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med 172: 69–75.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R., Orci L. (1985): Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42:469–177.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R., Orci L. (1987): Phorbol esters induce angiogenesis in vitro from large vessel endothelial cells. J Cell Physiol 130:284–291.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R., Orci L., Vassalli P. (1983): In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol 97:1648–1652.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R., Mouron P., Orci L. (1985): Vascular outgrowths from tissue explants embedded in fibrin or collagen gels: a simple in vitro model of angiogenesis. Cell Biol Int Rep 9:869–875.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R., Vassalli J-D., Baird A., Guillemin R., Orci L. (1986): Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci USA 83:7297–7301.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R., Pepper M.S., Vassalli J-D., Orci L. (1987): Phorbol ester induces cultured endothelial cells to invade a fibrin matrix in the presence of fibrinolytic inhibitors. J Cell Physiol 132:509–516.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R., Pepper M.S., Belin D., Vassalli J-D., Orci L. (1988): Induction of angiogenesis in vitro by vanadate, an inhibitor of phosphotyrosine phosphatases. J Cell Physiol 134: 460–66.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R., Pepper M.S., Möhle-Steinlein U., Risau W., Wagner E.F., Orci L. (1990): Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62:435–445.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R., Pepper M.S., Orci L. (1993): Paracrine induction of angiogenesis in vitro by Swiss 3T3 fibroblasts. J Cell Sci 105:1013–1024.

    PubMed  CAS  Google Scholar 

  • Montesano R., Vassalli J-D., Orci L., Pepper M.S. (1994): The role of growth factors and extracellular matrix in angiogenesis and epithelial morphogenesis. In: Frontiers in Endocrinology. Vol. 6: Developmental Endocrinology. Sizonenko PC., Aubert M.L., Vassalli J.-D., eds., Rome: Ares-Serono Symposia Publications, pp. 43–66.

    Google Scholar 

  • Montesano R., Kumar S., Orci L., Pepper M.S. (1996): Synergistic effect of hyaluronan oligosaccharides and vascular endothelial growth factor on angiogenesis in vitro. Lab Invest 75:249–262.

    PubMed  CAS  Google Scholar 

  • Moscatelli D., Presta M., Rifkin D.B. (1986): Purification of a factor from human placenta that stimulates capillary endothelial cell protease production, DNA synthesis and migration. Proc Natl Acad Sci USA 83:2091–2095.

    Article  PubMed  CAS  Google Scholar 

  • Moses M.A., Sudhalter J., Langer R. (1990): Identification of an inhibitor of neovascularization from cartilage. Science 248:1408–1460.

    Article  PubMed  CAS  Google Scholar 

  • Müller G., Behrens J., Nussbaumer U., Böhlen P., Birchmeier W. (1987): Inhibitory action of transforming growth factor-β on endothelial cells. Proc Natl Acad Sci USA 84:5600–5604.

    Article  PubMed  Google Scholar 

  • Nathan C., Sporn M. (1991): Cytokines in context. J Cell Biol 113:981–986.

    Article  PubMed  CAS  Google Scholar 

  • Nehls V., Drenckhahn D. (1995): A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc Res 50:311–322.

    Article  PubMed  CAS  Google Scholar 

  • Neufeld G., Tessler S., Gitay-Goren H., Cohen T., Levi B-Z. (1994): Vascular endothelial growth factor and its receptors. Progr Growth Factor Res 5:89–97.

    Article  CAS  Google Scholar 

  • Nicosia R.F., Ottinetti A. (1990): Growth of microvessels in serum-free matrix culture of rat aorta. Lab Invest 63:115–122.

    PubMed  CAS  Google Scholar 

  • Nicosia R.F., Bonanno E., Smith M., Yurchenco R (1994): Modulation of angiogenesis in vitro by laminin-entactin complex. Dev Biol 164:197–206.

    Article  PubMed  CAS  Google Scholar 

  • Okamura K., Morimoto A., Hamanaka R., Ono M., Kohno K., Uchida Y., Kuwano M. (1992): A model system for tumor angiogenesis: involvement of transforming growth factor-α in tube formation of human microvascular endothelial cells induced by esophageal cancer cells. Biochem Biophys Res Commun 186:1471–1479.

    Article  PubMed  CAS  Google Scholar 

  • Ornitz D.M., Herr A.B., Nilsson M., Westman J., Svahn C-M., Waksman G. (1995): FGF binding and FGF receptor activation by synthetic heparan-derived di- and trisaccharides. Science 268:432–136.

    Article  PubMed  CAS  Google Scholar 

  • Paku S., Paweletz N. (1991): First steps of tumor-related angiogenesis. Lab Invest 65:334–346.

    PubMed  CAS  Google Scholar 

  • Pardenaud L., Yassine F., Dieterlen-Lièvre F. (1989): Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105:437–85.

    Google Scholar 

  • Passaniti A., Taylor R.M., Pili R., Guo Y., Long P.V., Haney J.A., Pauly R.R., Grant D.S., Martin G.R. (1992): A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 67:519–528.

    PubMed  CAS  Google Scholar 

  • Pepper M.S., Montesano R. (1990): Proteolytic balance and capillary morphogenesis. Cell Diff Dev 32:319–328.

    Article  CAS  Google Scholar 

  • Pepper M.S., Vassalli J-D., Montesano R., Orci L. (1987): Urokinase-type plasminogen activator is induced in migrating capillary endothelial cells. J Cell Biol 105:2535–2541.

    Article  PubMed  CAS  Google Scholar 

  • Pepper M.S., Belin D., Montesano R., Orci L., Vassalli J-D. (1990): Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol 111:743–755.

    Article  PubMed  CAS  Google Scholar 

  • Pepper M.S., Montesano R., Vassalli J-D., Orci L. (1991a): Chondrocytes inhibit endothelial sprout formation in vitro: evidence for the involvement of a transforming growth factor-beta. J Cell Physiol 146:170–179.

    Article  PubMed  CAS  Google Scholar 

  • Pepper M.S., Montesano R., Orci L., Vassalli J-D. (1991b): Plasminogen activator-inhibitor-1 is induced in microvascular endothelial cells by a chondrocyte-derived transforming growth factor-beta. Biochem Biophys Res Commun 176:633–638.

    Article  PubMed  CAS  Google Scholar 

  • Pepper M.S., Ferrara N., Orci L., Montesano R. (1992a): Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189:824–831.

    Article  PubMed  CAS  Google Scholar 

  • Pepper M.S., Sappino A-P, Montesano R., Orci L., Vassalli J-D. (1992b): Plasminogen activator inhibitor-1 is induced in migrating endothelial cells. J Cell Physiol 153:129–139.

    Article  PubMed  CAS  Google Scholar 

  • Pepper M.S., Sappino A-P, Stocklin R., Montesano R., Orci L., Vassalli J-D. (1993a): Upregulation of urokinase receptor expression on migrating endothelial cells. J Cell Biol 122:673–684.

    Article  PubMed  CAS  Google Scholar 

  • Pepper M.S., Vassalli J-D., Orci L., Montesano R. (1993b): Biphasic effect of transforming growth factor-beta-1 on in vitro angiogenesis. Exp Cell Res 204:356–363.

    Article  PubMed  CAS  Google Scholar 

  • Pepper M.S., Vassalli J-D., Orci L., Montesano R. (1994a): Angiogenesis in vitro: cytokine interactions and balanced extracellular proteolysis. In: Angiogenesis. Molecular Biology, Clinical Aspects. Maragoudakis M.E., Gullino P.M., Lelkes P.I., eds., New York: Plenum Press, pp. 149–170.

    Google Scholar 

  • Pepper M.S., Wasi S., Ferrara N., Orci L., Montesano R. (1994b): In vitro angiogenic and proteolytic properties of bovine lymphatic endothelial cells. Exp Cell Res 210:298–305.

    Article  PubMed  CAS  Google Scholar 

  • Pepper M.S., Vassalli J-D., Wilks J.W., Schweigerer L., Orci L., Montesano R. (1994c): Modulation of microvascular endothelial cell proteolytic properties by inhibitors of angiogenesis. J Cell Biochem 55:419–434.

    Article  PubMed  CAS  Google Scholar 

  • Pepper M.S., Ferrara N., Orci L., Montesano R. (1995): Leukemia inhibitory factor (LIF) is a potent inhibitor of in vitro angiogenesis. J Cell Sci 108:73–83.

    PubMed  CAS  Google Scholar 

  • Pepper M.S., Mandriota S.J., Vassalli J-D., Orci L., Montesano R. (1996a): Angiogenesis-regulating cytokines: activities and interactions. In: Current Topics in Microbiology and Immunology, Vol. 213-II: Attempts to Understand Metastasis Formation. Günthert U., Birchmeier W., eds., Berlin and Heidelberg: Springer-Verlag, pp. 31–67.

    Chapter  Google Scholar 

  • Pepper M.S., Montesano R., Mandriota S.J., Orci L., Vassalli J-D. (1996b): Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein 49:138–162.

    PubMed  CAS  Google Scholar 

  • Pepper M.S., Tacchini-Cottier F., Sabapathy T.K., Montesano R., Wagner E.F. (1997): Endothelial cells transformed by polyoma virus middle-T oncogene: a model for hemangiomas and other vascular tumors. In: Tumor Angiogenesis. Lewis C.E., Bicknell R., Ferrara N., eds., Oxford: Oxford University Press pp. 310–331.

    Google Scholar 

  • Peters K.G., De Vries C., Williams L.T. (1993): Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc Natl Acad Sci USA 90:8915–8919.

    Article  PubMed  CAS  Google Scholar 

  • Phillips G.D., Whitehead R.A., Knighton D.R. (1992): Inhibition by methylprednisolone acetate suggests an indirect mechanism for TGF-β induced angiogenesis. Growth Factors 6:77–84.

    Article  PubMed  CAS  Google Scholar 

  • Ponting J., Kumar S., Pye D. (1993): Localization of hyaluronan and hyaluronectin in normal and tumour breast tissues. Int J Oncol 2:889–893.

    PubMed  CAS  Google Scholar 

  • Rak J.W., Hegmann E.J., Kerbel R.S. (1993): The role of angiogenesis in tumor progression and metastasis. Adv Mol Cell Biol 7:205–251.

    Article  Google Scholar 

  • Risau W., Sariola A., Zerwes H-G., Sasse J., Ekblom P., Kemler R., Doetschman T. (1988): Vasculogenesis and angiogenesis in embryonic stem cell derived embryoid bodies. Development 102:471–478.

    PubMed  CAS  Google Scholar 

  • Roberts A.B., Sporn M.B., Assoian R.K., Smith J.M., Roche N.S., Wakefield L.M., Heine U.I., Liotta L.A., Falanga V., Kehrl J.H., Fauci A.S. (1986): Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171.

    Article  PubMed  CAS  Google Scholar 

  • Rooney P., Kumar S., Ponting J., Wang M. (1995): The role of hyaluronan in tumor neovascularization. Int J Cancer 60:632–636.

    Article  PubMed  CAS  Google Scholar 

  • Rooney P., Kumar P., Ponting J., Kumar S. (1996): The role of collagens and proteoglycans in tumor angiogenesis. In: Tumor Angiogenesis. Bicknell R., Lewis C.E., Ferrara N., eds., Oxford: Oxford University Press, 141–151.

    Google Scholar 

  • Saksela O., Moscatelli D., Rifkin D.B. (1987): The opposing effects of basic fibroblast growth factor and transforming growth factor beta on the regulation of plasminogen activator activity in capillary endothelial cells. J Cell Biol 105:957–963.

    Article  PubMed  CAS  Google Scholar 

  • Sakuda H., Nakashima Y., Kuriyama S., Sueishi K. (1992): Media conditioned by smooth muscle cells cultured in a variety of hypoxic environments stimulates in vitro angiogenesis. A relationship to transforming growth factor-βl. Am J Pathol 141:1507–1516.

    PubMed  CAS  Google Scholar 

  • Sato Y., Rifkin D.B. (1988): Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis. J Cell Biol 107:119–1205.

    Article  Google Scholar 

  • Sato Y., Okamura K., Morimoto A., Hamanaka R., Hamaguchi K., Shimada T., Ono M., Kohno K., Sakata T., Kuwano M. (1993): Indispensable role of tissue-type plasminogen activator in growth factor-dependent tube formation of human microvascular endothelial cells in vitro. Exp Cell Res 204:223–229.

    Article  PubMed  CAS  Google Scholar 

  • Sattar A., Kumar S., West D.C. (1992): Does hyaluronan have a role in endothelial cell proliferation of the synovium? Semin Arthr Rheum 22:37–43.

    Article  CAS  Google Scholar 

  • Sattar A., Rooney P., Kumar S., Pye D., West D.C., Scott I., Ledger P. (1994): Application of angiogenic oligosaccharides of hyaluronan increase blood vessel numbers in skin. J Invest Dermatol 103:573–579.

    Article  Google Scholar 

  • Savani R.C., Wang C., Yang B., Zhang S., Kinsella M.G., Wight T.N., Stern R., Nance D.M., Turley E.A. (1995): Migration of bovine aortic smooth muscle cells after wounding injury. The role of hyaluronan and RHAMM. J Clin Invest 95:1158–1168.

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger J., Lax I., Lemmon M. (1995): Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 83:357–360.

    Article  PubMed  CAS  Google Scholar 

  • Sherman L., Sleeman J., Herrlich P., Ponta H. (1994): Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr Opin Cell Biol 6:726–733.

    Article  PubMed  CAS  Google Scholar 

  • Shweiki D., Itin A., Soffer D., Keshet E. (1992): Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-mediated angiogenesis. Nature 359:843–845.

    Article  PubMed  CAS  Google Scholar 

  • Shweiki D., Itin A., Neufeld G., Gitay-Goren H., Keshet E. (1993): Patterns of expression of vascular endothelial growth factor (VEGF) and VEGF receptors in mice suggest a role in hormonally-regulated angiogenesis. J Clin Invest 91:2235–2243.

    Article  PubMed  CAS  Google Scholar 

  • Slevin M.A., Gaffney J., Kumar S. (1996): Hyaluronan induced proliferation of bovine aortic endothelial cells requires activation of MAP kinase (submitted).

    Google Scholar 

  • Stahl N., Yancopoulos G.D. (1993): The alphas, betas and kinases of cytokine receptor complexes. Cell 74:587–590.

    Article  PubMed  CAS  Google Scholar 

  • Stamenkovic I., Aruffo A., Amiot M., Seed B. (1991): The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO J 10:343–348.

    PubMed  CAS  Google Scholar 

  • Strom S.C., Michalopoulos G. (1982): Collagen as a substrate for cell growth and differentiation. Meth Enzymol 82:544–555.

    Article  PubMed  CAS  Google Scholar 

  • Symes J.F., Sniderman A.D. (1994): Angiogenesis: potential therapy for ischaemic disease. Curr Opin Lipidol 5:305–312.

    Article  PubMed  CAS  Google Scholar 

  • Taga T., Kishimoto T. (1993): Cytokine receptors and signal transduction. FASEB J 7:3387–3396.

    Google Scholar 

  • Tessler S., Rockwell P., Hicklin D., Cohen T., Levi B-Z., Witte L., Lemischka I.R., Neufeld G. (1994): Heparin modulates the interaction of VEGF165 with soluble and cell associated Flk-1 receptors. J Biol Chem 269:12456–12461.

    PubMed  CAS  Google Scholar 

  • Thomas K.A. (1996): Vascular endothelial growth factor, a potent and selective angiogenic factor. J Biol Chem 271:603–606.

    PubMed  CAS  Google Scholar 

  • Toole B.P (1990): Hyaluronan and its binding proteins, the hyaladherins. Curr Opin Cell Biol 2:839–844.

    Article  PubMed  CAS  Google Scholar 

  • Toole B.P. (1991): Proteoglycans and hyaluronan in morphogenesis and differentiation. In: Cell Biology of Extracellular Matrix, 2nd ed. Hay ED, ed., New York: Plenum Press, pp. 305–341.

    Chapter  Google Scholar 

  • Toole B.P, Biswas C., Gross J. (1979): Hyaluronate and invasiveness of the rabbit V2 carcinoma. Proc Natl Acad Sci USA 76:6199–6203.

    Article  Google Scholar 

  • Turley E.A., Tretiak M. (1985): Glycosaminoglyeans produced by murine melanoma variants in vivo and in vitro. Cancer Res 45:5098–5105.

    PubMed  CAS  Google Scholar 

  • Turley E.A., Austen L., Vandeligt K., Clary C. (1991): Hyaluronan and a cell-associated hyaluronan binding protein regulate the locomotion of Ras-transformed cells. J Cell Biol 112: 1041–1047.

    Article  PubMed  CAS  Google Scholar 

  • Vassalli J-D., Sappino A-P, Belin D. (1991): The plasminogen activator/plasmin system. J Clin Invest 88:1067–1072.

    Article  PubMed  CAS  Google Scholar 

  • Vernon R.B., Sage E.H. (1995): Between molecules and morphology: extracellular matrix and creation of vascular form. Am J Pathol 147:873–833.

    PubMed  CAS  Google Scholar 

  • Vernon R.B., Lara S.L., Drake C.J., Iruela-Arispe M.L., Angello J.C., Little C.D., Wight T.N., Sage E.H. (1995): Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In Vitro Cell Dev Biol 31:120–131.

    Article  CAS  Google Scholar 

  • Wahl S.M., Hunt D.A., Wakefield L.A., Martney-Francis N., Wahl L.M., Roberts A.B., Sporn M.B. (1987): Transforming growth factor type β induces monocyte Chemotaxis and growth factor production. Proc Natl Acad Sci USA 84:5788–5792.

    Article  PubMed  CAS  Google Scholar 

  • Wang D-Y., Kao C-H., Yang V.C., Chen J-K. (1994): Glycosaminoglycans enhance phorbol ester-induced proteolytic activity and angiogenesis in vitro. In Vitro Cell Dev Biol 30A:777–782.

    Article  CAS  Google Scholar 

  • Weigel PH., Fuller G.M., LoBoeuf R.D. (1986): A model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing. J Theor Biol 119:219–234.

    Article  PubMed  CAS  Google Scholar 

  • West D.C., Kumar S. (1988): Endothelial cell proliferation and diabetic retinopathy. Lancet 1:715–716.

    Article  PubMed  CAS  Google Scholar 

  • West D.C., Kumar S. (1989): The effects of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Exp Cell Res 183:179–196.

    Article  PubMed  CAS  Google Scholar 

  • West D.C., Hampson I.N., Arnold F., Kumar S. (1985): Angiogenesis induced by degradation products of hyaluronic acid. Science 228:1324–1326.

    Article  PubMed  CAS  Google Scholar 

  • Williams R.L., Risau W., Zerwes H.G., Drexler H., Aguzzi A., Wagner E.F. (1989): Endothelioma cells expressing the polyoma middle T oncogene induce hemangiomas by host cell recruitment. Cell 57:1053–1063.

    Article  PubMed  CAS  Google Scholar 

  • Wiseman D.M., Polverini P.J., Kamp D.W., Leibovich S.J. (1988): Transforming growth factor beta (TGFβ) is chemotactic for human monocytes and induces their expression of angiogenic activity. Biochem Biophys Res Commun 157:793–800.

    Article  PubMed  CAS  Google Scholar 

  • Yang E.Y., Moses H.L. (1990): Transforming growth factor βl-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J Cell Biol 111:731–741.

    Article  PubMed  CAS  Google Scholar 

  • Yasunaga C., Nakashima Y., Sueishi K. (1989): A role of fibrinolytic activity in angiogenesis. Quantitative assay using in vitro method. Lab Invest 61:698–704.

    PubMed  CAS  Google Scholar 

  • Yoneda M., Yamagata M., Sakaru S., Kimata K. (1988): Hyaluronic acid modulates proliferation of mouse dermal fibroblasts in culture. J Cell Sci 90:265–273.

    PubMed  CAS  Google Scholar 

  • Yoshida A., Anand-Apte B., Zetter B.R. (1996): Differential endothelial migration and proliferation to basic fibroblast growth factor and vascular endothelial growth factor. Growth Factors 13:57–64.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser

About this chapter

Cite this chapter

Montesano, R., Pepper, M.S. (1996). Three-Dimensional In Vitro Assay of Endothelial Cell Invasion and Capillary Tube Morphogenesis. In: Little, C.D., Mironov, V., Sage, E.H. (eds) Vascular Morphogenesis: In Vivo, In Vitro, In Mente. Cardiovascular Molecular Morphogenesis. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4156-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4156-0_8

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8678-3

  • Online ISBN: 978-1-4612-4156-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics