Skip to main content

Is the Fractal Nature of Intraorgan Spatial Flow Distributions Based on Vascular Network Growth or on Local Metabolic Needs?

  • Chapter
Vascular Morphogenesis: In Vivo, In Vitro, In Mente

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

In this chapter we attempt to relate the coronary vascular anatomy, a system of parallel paths with differing transit times, to regional flow distributions, to transit time distribution, and to measures of regional physiological functions. To do this we explore some approaches to algorithmic vascular growth. “Growth” from embryonic beginnings through development of the heart is not what we treat here; rather we try to capture the essence of the adult form of the vascular network in algorithmic form in order to see how well its behavior matches that of the real system. This first part of the exercise, instead of following the dimensional and physiological changes that occur from embryonic to adult life, is an attempt to determine whether or not forming a network model from a set of statistically defined vessels, and positioning them within the contours of the adult heart, produces a network which shows appropriate physiological behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin R.E., Jr., Aldea G.S., Coggins D. L., Flynn A.E., and Hoffman J.I.E, Profound spatial heterogeneity of coronary reserve: Discordance between patterns of resting and maximal myocardial blood flow. Circ. Res. 67:319–331, 1990.

    PubMed  Google Scholar 

  • Bassingthwaighte J.B., Yipintsoi T., and Harvey R.B, Microvasculature of the dog left ventricular myocardium. Microvasc. Res. 7:229–249, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Bassingthwaighte J.B. Physiological heterogeneity: Fractals link determinism and randomness in structures and functions. News Physiol. Sci. 3:5–10, 1988.

    PubMed  Google Scholar 

  • Bassingthwaighte J.B., King R.B., and Roger S.A, Fractal nature of regional myocardial blood flow heterogeneity. Circ. Res. 65:578–590, 1989.

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte J.B., and Beyer R.P. Fractal correlation in heterogeneous systems. Physica D 53:71–84, 1991.

    Article  Google Scholar 

  • Bassingthwaighte J.B., and Beard D.A, Fractal 15O-water washout from the heart. Circ. Res. 77:1212–1221, 1995.

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte J.B., Beard D.A., and King R.B. Fractal regional myocardial blood flows: the anatomical basis. In: Fractals in Biology and Medicine, edited by Losa G., Weibel E., and Nonnenmacher T. Basel: Birkhauser, 1997, pp. 000–000.

    Google Scholar 

  • Batra S., and Rakusan K. Capillary length, tortuosity, and spacing in rat myocardium during cardiac cycle. Am. J. Physiol. 263 (Heart Circ. Physiol. 32):H1369-H1376, 1992.

    PubMed  CAS  Google Scholar 

  • Beard D.A., and Bassingthwaighte J.B, Fractal nature of myocardial blood flow described by a whole-organ model of arterial network. Circ. Res. 1997.

    Google Scholar 

  • Caldwell J.H., Martin G.V., Raymond G.M., and Bassingthwaighte J.B. Regional myocardial flow and capillary permeability-surface area products are nearly proportional. Am. J. Physiol. 267 (Heart Circ. Physiol. 36):H654-H666, 1994.

    PubMed  CAS  Google Scholar 

  • Chilian W.M. Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium. Circ. Res. 69:561–570, 1991.

    PubMed  CAS  Google Scholar 

  • Hudlická O. Development of microcirculation: capillary growth and adaptation. In: Handbook of Physiology. Section 2: The Cardiovascular System Volume IV, edited by Renkin E.M. and Michel C.C. Bethesda, Maryland: American Physiological Society, 1984, pp. 165–216.

    Google Scholar 

  • Kassab G.S., Rider C.A., Tang N.J., and Fung Y.B, Morphometry of pig coronary arterial trees. Am. J. Physiol. 265 (Heart Circ. Physiol. 34):H350-H365, 1993.

    PubMed  CAS  Google Scholar 

  • Kassab G.S., Berkley J., and Fung Y.C.B, Analysis of pig’s coronary arterial blood flow with detailed anatomical data. Ann. Biomed. Eng. 25:204–217, 1997a.

    Article  PubMed  CAS  Google Scholar 

  • Kassab G.S., Pallencaoe E., and Fung Y C. The longitudinal position matrix of the pig coronary artery and its hemodynamic implications. Ann. Biomed. Eng. 25, 1997b.

    Google Scholar 

  • King R.B., Bassingthwaighte J.B., Hales J.R.S., and Rowell L.B, Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ. Res. 57:285–295, 1985.

    PubMed  CAS  Google Scholar 

  • King R.B., and Bassingthwaighte J.B, Temporal fluctuations in regional myocardial flows. Pflügers Arch. (Eur. J. Physiol.) 413/4:336–342, 1989.

    Article  CAS  Google Scholar 

  • Lefèvre J. Teleonomical optimization of a fractal model of the pulmonary arterial bed. J. Theor. Biol. 102:225–248, 1983.

    Article  PubMed  Google Scholar 

  • Li Z., Yipintsoi T., and Bassingthwaighte J.B. Nonlinear model for capillary-tissue oxygen transport and metabolism. Ann. Biomed. Eng. 25:604–619, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Mandelbrot B.B. The Fractal Geometry of Nature. San Francisco: W.H. Freeman and Co., 1983, 468 pp.

    Google Scholar 

  • Matsumoto T., Goto M., Tachibana H., Ogasawara Y., Tsujioka K., and Kajiya F. Microheterogeneity of myocardial blood flow in rabbit hearts during normoxic and hypoxic states. Am J. Physiol. 270:H435–441, 1996.

    PubMed  CAS  Google Scholar 

  • Meinhardt H. Models of Biological Pattern Formation. New York: Academic Press, 1982.

    Google Scholar 

  • Murray C.D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 9:835–841, 1926.

    Article  PubMed  CAS  Google Scholar 

  • Nellis S.H., Liedtke A.J., and Whitesell L. Small coronary vessel pressure and diameter in an intact beating rabbit heart using fixed-position and free-motion techniques. Circ. Res. 49:342–353, 1981.

    PubMed  CAS  Google Scholar 

  • Pries A.R., Secomb T.W., Gaehtgens P., and Gross J.F. Blood flow in microvascular networks. Experiments and simulation. Circ. Res. 67:826–834, 1990.

    PubMed  CAS  Google Scholar 

  • Remington J.W., and Wood E H, Formation of peripheral pulse contour in man. J. Appl. Physiol. 9:433–442, 1956.

    PubMed  CAS  Google Scholar 

  • Tillmanns H., Steinhausen M., Leinberger H., Thederan H., and Kübler W. Pressure measurements in the terminal vascular bed of the epimyocardium of rats and cats. Circ. Res. 49:1202–1211, 1981.

    PubMed  CAS  Google Scholar 

  • van Bavel E., and Spaan J.A, Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity. Circ. Res. 71:1200–1212, 1992.

    Google Scholar 

  • van Beek J.H.G.M., Bassingthwaighte J.B., and Roger S.A. Fractal networks explain regional myocardial flow heterogeneity. In: Oxygen Transport to Tissue XI. Adv. Exp. Med. Biol. 248, edited by Rakusan K. New York: Plenum Press, 1989, pp. 249–257.

    Google Scholar 

  • West G.B., Brown J.H., and Enquist B.J. A general model for the origin of allometric scaling laws in biology. Science 276:122–126, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt H. Models for the formation of netlike structures. In: Vascular Morphogenesis: In Vivo, In Vitro, In Mente, edited by Little C.D., Mironov V., and Sage E.H. Boston: Birkhauser, 1997 pp. 147–172.

    Google Scholar 

  • Sage E.H. Introduction to Part II. In: Vascular Morphogenesis: In Vivo, In Vitro, In Mente, edited by Little C.D., Mironov V., and Sage E.H. Boston: Birkhauser, 1997 pp. 73–77.

    Google Scholar 

  • Murray J.A., Manoussaki D., Lubkin S.R., and Vernon R. A mechanical theory of in vitro vascular network formation. In: Vascular Morphogenesis: In Vivo, In Vitro, In Mente, edited by Little C.D., Mironov V., and Sage E.H. Boston: Birkhauser, 1997 pp. 173–188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser

About this chapter

Cite this chapter

Bassingthwaighte, J.B., Beard, D.A., Li, Z., Yipintsoi, T. (1996). Is the Fractal Nature of Intraorgan Spatial Flow Distributions Based on Vascular Network Growth or on Local Metabolic Needs?. In: Little, C.D., Mironov, V., Sage, E.H. (eds) Vascular Morphogenesis: In Vivo, In Vitro, In Mente. Cardiovascular Molecular Morphogenesis. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4156-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4156-0_16

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8678-3

  • Online ISBN: 978-1-4612-4156-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics