Skip to main content

Blood Vessel Growth: Mathematical Analysis and Computer Simulation, Fractality, and Optimality

  • Chapter
Vascular Morphogenesis: In Vivo, In Vitro, In Mente

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

The structural complexity of the circulatory system exceeds the available genetic information. In the developmental process, therefore, self-organization on epigenetic levels can be postulated, which exploits information that is being generated during embryogenesis. We used mathematical tools to analyze patterns and complexity, and designed a computer model to predict geometrical and biophysical properties of bifurcating vessel systems. In particular, some boundary conditions during development, and the problem of optimality are addressed. We propose that the complexity of blood vessel formation in vivo and in sapio may be adequately described with a combination of various classical geometrical and physical concepts, supplemented by concepts of fractal geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auerbach W., Auerach R. (1994): Angiogenesis inhibition: a review. Pharmac Ther 63:265–311.

    Article  CAS  Google Scholar 

  • Auerbach R., Auerbach W., Polakowski I. (1991): Assays for angiogenesis: a review. Pharmac Ther 51:1–11.

    Article  Google Scholar 

  • Ausprunk D.H., Knighton D.R., Folkman J. (1974): Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. Dev Biol 38:237–248.

    Article  PubMed  CAS  Google Scholar 

  • Barnsley M.F. (1993): Fractals Everywhere. Boston: Academic Press.

    Google Scholar 

  • Bittner H.R. (1991): Modelling of fractal vessel systems. In: Fractals in the Fundamental and Applied Sciences, Peitgen H.O., ed. Amsterdam: Elsevier, 59–71.

    Google Scholar 

  • Caruthers S.D., Harris T.R. (1994): Effects of pulmonary blood flow on the fractal nature of flow heterogeneity in sheep lungs. J Appl Physiol 77:1474–1479.

    PubMed  CAS  Google Scholar 

  • Clark E.B. (1991): Functional characteristics of the embryonic circulation. In: The Development of the Vascular System. Basel:Karger.

    Google Scholar 

  • Cruz-Orive L.M. (1997): Stereology of single objects. J Microsc 186:93–107.

    Article  Google Scholar 

  • Davies P.F. (1995): Flow-mediated endothelial mechanotransduction. Physiol Rev 75:519–560.

    PubMed  CAS  Google Scholar 

  • Frame M.D.S., Sarelius I.H. (1995): Energy optimization and bifurcation angles in the microcirculation. Microvasc Res 50:301–310.

    Article  PubMed  CAS  Google Scholar 

  • Hess W.R. (1913): Das Prinzip des kleinsten Kraftverbrauchs im Dienste hämodynamischer Forschung. Leipzig: Veit & Co.

    Google Scholar 

  • Hungerford J.E., Owens G.K., Argraves W.S, Little C.D. (1996): Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers. Dev Biol 178:375–392.

    Article  PubMed  CAS  Google Scholar 

  • Kirchner L.M., Schmidt S.P., Gruber B.S. (1996): Quantitation of angiogenesis in the chick chorioallantoic membrane model using fractal analysis. Microvasc Res 51:2–17.

    Article  PubMed  CAS  Google Scholar 

  • Kleiber M. (1932): Body size and metabolism. Hilgardia 6:315–349.

    CAS  Google Scholar 

  • Kurz H., Sandau K. (1997): Modelling of blood vessel development—bifurcation pattern and hemodynamics, optimality and allometry. Comments Theor Biol 4/4:261–291.

    Google Scholar 

  • Kurz H., Wilting J., Christ B. (1994): Multivariate characterization of blood vessel morphogenesis in the avian chorioallantoic membrane (CAM): cell proliferation, length density and fractal dimension. In: Fractals in Biology and Medicine, Losa G.E., Nonnenmacher T.H., Weibel E., eds., Boston: Birkhäuser.

    Google Scholar 

  • Kurz H., Ambrosy S., Wilting J., Marmé D., Christ B. (1995): Proliferation pattern of capillary endothelial cells in chorioallantoic membrane development indicates local growth control, which is counteracted by vascular endothelial growth factor application. Dev Dyn 203:174–186.

    Article  PubMed  CAS  Google Scholar 

  • Kurz H., Gärtner T., Eggli P.S., Christ B. (1996): First blood vessels in the avian neural tube are formed by a combination of dorsal angioblast immigration and ventral sprouting of endothelial cells. Dev Biol 173:133–147.

    Article  PubMed  CAS  Google Scholar 

  • Kurz H., Sandau K., Christ B. (1997): On the bifurcations of blood vessels—Wilhelm Roux’s doctoral thesis (Jena 1878)—a seminal work for biophysical modelling in developmental biology. Annals Anat 179:33–36.

    CAS  Google Scholar 

  • LaBarbera M. (1990): Principles of design of fluid transport systems in zoology. Science 249:992–1000.

    Article  PubMed  CAS  Google Scholar 

  • Li L., Miano J.M., Mercer B., Olson E.N. (1996): Expression of the SM22a promotor in transgenic mice provides evidence for distinct transcriptional regulatory programs in vascular and visceral smooth muscle cells. J Cell Biol 132:849–859.

    Article  PubMed  CAS  Google Scholar 

  • Mandelbrot B.B. (1982): The Fractal Geometry of Nature. New York: Freeman.

    Google Scholar 

  • Mainster M.A. (1990): The fractal properties of retinal vessels: embryological and clinical implications. Eye 4:235–241.

    Article  PubMed  Google Scholar 

  • Masters B.R.(1994): Fractal analysis of normal human retinal blood vessels. Fractals 2:103–110.

    Article  Google Scholar 

  • Matsuo T., Okeda R., Takahashi M., Funata M. (1990): Characterization of bifurcating structures of blood vessels using fractal dimensions. Forma 5:19–27.

    Google Scholar 

  • Mironov V.A., Hritz M.A., LaManna J.C., Hudetz A.G., Harik S.I. Architectural alterations in rat cerebral microvessels after hypobaric hypoxia. Brain Res 660:73–80.

    Google Scholar 

  • Murray J.D. (1995): Use and abuse of fractal theory in neuroscience. J Comp Neurol 361:369–370.

    Article  PubMed  CAS  Google Scholar 

  • Murray C.D. (1926): The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12:207–304.

    Article  PubMed  CAS  Google Scholar 

  • Moessler H., Mericskay M., Li Z., Nagl S., Paulin D., Small J.V. (1996): The SM22 promoter directs tissue-specific expression in arterial but not in venous or visceral smooth muscle cells in transgenic mice. Development 122:2415–2425.

    PubMed  CAS  Google Scholar 

  • Owens G.K. (1995): Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517.

    PubMed  CAS  Google Scholar 

  • Panico J., Sterling P. (1995): Retinal neurons and vessels are not fractal but space filling. J Comp Neurol 361:479–490.

    Article  PubMed  CAS  Google Scholar 

  • Patan S., Haenni B., Burri PH. (1993): Evidence of intussusceptive capillary growth in the chicken chorio-allantoic membrane (CAM). Anat Embryol 187:121–130.

    Article  PubMed  CAS  Google Scholar 

  • Pollanen M.S. (1992): Dimensional optimization at different levels of the arterial hierarchy, J Theor Biol 159:267–270.

    Article  PubMed  CAS  Google Scholar 

  • Pries A.R., Secomb T.W., Gaehtgens P., Gross J.F. (1990): Blood flow in microvascular networks: experiments and simulation. Circ Res 67:826–834.

    PubMed  CAS  Google Scholar 

  • Pries A.R., Secomb T.W., Gaehtgens P. (1995): Design principles of vascular beds. Circ Res 77:1017–1023.

    PubMed  CAS  Google Scholar 

  • Rossitti S., Löfgren J. (1993): Vascular dimensions of the cerebral arteries follow the principle of minimum work. Stroke 24:371–377.

    Article  PubMed  CAS  Google Scholar 

  • Roux W. (1878): Über die Verzweigungen der Blutgefässe. Jena: Dissertation.

    Google Scholar 

  • Roux W. (1895): Gesammelte Abhandlungen über Entwicklungsmechanik der Organismen. Leipzig: Engelmann.

    Google Scholar 

  • Sandau K. (1995): Spatial fibre and surface processes—stereological estimations and applications. In: From Data to Knowledge: Theoretical and Practical Aspects of Classification, Data Analysis and Knowledge Organisation, Gaul W, Pfeifer D, eds. Berlin: Springer.

    Google Scholar 

  • Sandau K. (1996a): Quantitative microscopy and stereology with tools of image analysis. EJ Pathol 2.2:962–02.

    Google Scholar 

  • Sandau K. (1996b): A note on fractal sets and the measurement of fractal dimension. Physica A 233:1–18.

    Article  Google Scholar 

  • Sandau K., Hahn U. (1994): Some remarks on the accuracy of surface area estimation using the spatial grid. J Microsc 173:67–72.

    Article  Google Scholar 

  • Sandau K., Kurz H. (1994): Modelling of vascular growth processes: a stochastic biophysical approach to embryonic angiogenesis. J Microsc 175:205–213.

    Article  PubMed  CAS  Google Scholar 

  • Sandau K., Kurz H. (1995): Some properties about the endpoints of a 2-D arterial tree simulated by a stochastic growth model. 8th Int Workshop Stoch Geom Stereol Image Anal, Sandbjerg.

    Google Scholar 

  • Sandau K., Kurz H. (1997): Measuring fractal dimensions and complexity—an alternative approach with an application. J Microsc 186:164–176.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K. (1989): Scaling: Why Is Animal Size So Important? Cambridge: Cambridge University Press.

    Google Scholar 

  • Sernetz M., Gelléri B., Hofmann J. (1985): The organism as bioreactor. Interpretation of the reduction law of metabolism in terms of heterogeneous catalysis and fractal structure. J Theor Biol 117:209–230.

    Article  PubMed  CAS  Google Scholar 

  • Soille P., Rivest J.F. (1996): On the validity of fractal dimension measurements in image analysis. J Visual Comm Image Represent 7:217–229.

    Article  Google Scholar 

  • Spatz H.C. (1991): Circulation, metabolic rate, and body size in mammals. J Comp Physiol B 161:231–236.

    Article  CAS  Google Scholar 

  • Stark C.P. (1991): An invasion percolation model of draining network evolution. Nature 352:423–125.

    Article  Google Scholar 

  • Stoyan D., Stoyan H. (1994): Fractals, Random Shapes and Point Fields. Chichester: Wiley & Sons.

    Google Scholar 

  • Strick D.M., Waycaster R.L., Montani J.P., Gay W.J., Adair T.H. (1991): Morphometric measurements of chorioallantoic membrane vascularity: effects of hypoxia and hyperoxia. Am J Physiol 260:H1385-H1389.

    PubMed  CAS  Google Scholar 

  • Suwa N., Takahashi T., Fukasawa H., Sasaki Y. (1963): Estimation of intravascular blood pressure gradient by mathematical analysis of arterial casts. Tohoku J Exp Med 79:168–198.

    Article  PubMed  CAS  Google Scholar 

  • Tautu P. (1994): Fractal and non-fractal growth of biological cell systems. In: Fractals in Biology and Medicine, Losa G.E., Nonnenmacher T.H., Weibel E., eds. Boston: Birkhäuser.

    Google Scholar 

  • Tazawa H. (1980): Oxygen and CO2 exchange and acid-base regulation in the avian embryo. Am Zool 20:395–404.

    Google Scholar 

  • Thoma R. (1901): Über den Verzweigungsmodus der Arterien. Archiv Entwicklungsmechanik 12:352–413.

    Article  Google Scholar 

  • Thompson D.W. (1917): On Growth and Form. Cambridge University Press.

    Google Scholar 

  • Uylings H.B.M. (1977): Optimization of diameters and bifurcation angles in lung and vascular tree structures. Bull Math Biol 39:509–520.

    PubMed  CAS  Google Scholar 

  • Van Beek J.H.G.M., Roger S.A., Bassingthwaighte J.B. (1989): Regional myocardial flow heterogeneity explained with fractal networks. Am J Physiol 257:H1670-H1680.

    PubMed  Google Scholar 

  • Van Mierop L.R.S., Bertuch C.J. (1967): Development of arterial blood pressure in the chick embryo. Am J Physiol 212(l):43–48.

    PubMed  Google Scholar 

  • Weibel E.R. (1979): Stereological Methods. New York: Academic Press.

    Google Scholar 

  • Weibel E.R. (1991): Fractal geometry: a design principle for living organisms. Am J Physiol 162:L361-L369.

    Google Scholar 

  • Wilting J., Christ B., Bokeloh M., Weich H.A. (1993): In vivo effects of vascular endothelial growth factor on the chicken chorioallantoic membrane. Cell Tissue Res 274:163–172.

    Article  PubMed  CAS  Google Scholar 

  • Wilting J., Brand-Saberi B., Kurz H., Christ B. (1995): Development of the embryonic vascular system. Mol Cell Biol Res 41/4:219–232.

    CAS  Google Scholar 

  • Wilting J., Birkenhäger R., Eichmann A., Kurz H., Martiny-Baron G., Marme D., Marthy J.E.G., Christ B., Weich H.A. (1996): VEGF121 induces proliferation of vascular endothelial cells and expression of flk-1 without affecting lymphatic vessels of the chorioallantoic membrane. Dev Biol 176:76–85.

    Article  PubMed  CAS  Google Scholar 

  • Woldenberg M.J., Horsfield K. (1986): Relation of branching angles to optimality for four cost principles. J Theor Biol 122:187–204.

    Article  PubMed  CAS  Google Scholar 

  • Yablonka-Reuveni Z., Schwartz S.M., Christ B. (1995): Development of chicken aortic smooth muscle: expression of cytoskeletal and basement membrane proteins defines two distinct cell phenotypes emerging from a common lineage. Cell Mol Biol Res 41:241–249.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser

About this chapter

Cite this chapter

Kurz, H., Sandau, K., Wilting, J., Christ, B. (1996). Blood Vessel Growth: Mathematical Analysis and Computer Simulation, Fractality, and Optimality. In: Little, C.D., Mironov, V., Sage, E.H. (eds) Vascular Morphogenesis: In Vivo, In Vitro, In Mente. Cardiovascular Molecular Morphogenesis. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4156-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4156-0_14

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8678-3

  • Online ISBN: 978-1-4612-4156-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics