Skip to main content

Part of the book series: Cardiovascular Molecular Morphogenesis ((CARDMM))

Abstract

The ability to generate the complex structure of an organism in each life cycle is one of the most fascinating aspect of living beings. In their development, higher organisms grow rapidly to a size where passive diffusion becomes inappropriate to supply the tissue with oxygen, water, nutrients, and information. Nature has solved the resulting problems by the invention of complex-shaped organs that consists of long branched filaments. The blood vessels, the lymph system, the tracheae of insects, the venation of leaves, or the nervous system are examples of such distributed organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Algire, G.H., and Chalkley, H.W. (1945). Vascular reaction of normal and malignant tissue in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic implants. J. Natl. Cancer Inst. 6, 73.

    Google Scholar 

  • Breier, G., Albrecht, U., Sterrer, S., and Risau, W. (1992). Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114, 521–532.

    PubMed  CAS  Google Scholar 

  • Burri, P.H., and Tarek, M.R. (1990). A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat. Rec. 228, 35–45.

    Article  PubMed  CAS  Google Scholar 

  • Condie, J.M., and Brower, D.L. (1989). Allelic interactions at the engrailed locus of Drosophila—engrailed protein expression in imaginal disks. Dev. Biol. 135, 31–42.

    Article  PubMed  CAS  Google Scholar 

  • Drake, C.J., and Little, C. (1995). Exogenous vascular endothelials growth factor induces malformed and hyperfused vessels during embryonic neovascularization. Proc. Natl. Acad. Sci. USA 92, 7657–7661.

    Article  PubMed  CAS  Google Scholar 

  • Eichmann, A., Marcelle, C., Breant, C., and Louarin, N. (1993). To novel molecules related to the VEGF receptor are expressed in the early endothelial cells during avian embryonic development. Mech. Dev. 42, 33–48.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara, N., and Henzel, W.J. (1989). Pituitary follicular cells secrete a novel heparin-binding growth factor specific for the vascular endothelial cells. Biochem. Biophys. Res. Commun. 161, 851–858.

    Article  PubMed  CAS  Google Scholar 

  • Fett, J.R., Strydom, D.J., Lubb, R.R., Alterman, E.M., Bethune, J.L., Riordan, J.F., and Vallee, B.L. (1985). Isolation and characterization of angiogenin, an aniogenetic protein from human carcinoma cells. Biochemistry 24, 5480–5486.

    Article  PubMed  CAS  Google Scholar 

  • Flamme, I., and Risau, W. (1992). Induction of vasculogenesis and hematopoiesis in vitro. Development 116, 435–439.

    PubMed  CAS  Google Scholar 

  • Flamme, I., Vonreutern, M., Drexler, H.C.A., Syedali, S., and Risau, W. (1995). Overexpression of vascular endothelial growth-factor in the avian embryo induces hypervascularization and increased vascular-permeability without alterations of embryonic pattern-formation. Dev. Biol. 171, 399–114.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. (1982). Angiogenesis: initiation and control. Ann. NY Acad. Sci. 401, 212–227.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J., Merler, E., Abernathy, C., and Williams, G. (1971). Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med. 133, 275–288.

    Article  PubMed  CAS  Google Scholar 

  • Gierer, A. (1981). Generation of biological patterns and form: some physical, mathematical, and logical aspects. Prog. Biophys. Molec. Biol. 37, 1–47.

    Article  CAS  Google Scholar 

  • Gierer, A., and Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik 12, 30–39.

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., Abraham, J.A., and Schilling, J. (1989). Isolation an characterization of a vascular endothelial cell mitogen produced by the pituitary-derived folliculo stellate cells. Proc. Natl. Acad. Sci. USA 86, 7311–7315.

    Article  PubMed  CAS  Google Scholar 

  • Gurdon, J.B., Mitchell, A., and Mahony, D. (1995). Direct and continuous assessment by cells of their position in a morphogen gradient. Nature 376, 520–521.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, R.G. (1910). The outgrowth of the nerve fiber as a mode of protoplasmic movements. J. Exp. Zool. 9, 787–846.

    Article  Google Scholar 

  • Jiang, J., Hoey, T., and Levine, M. (1991). Autoregulation of a segmentation gene in Drosophila—combinatorial interaction of the even-skipped homeo box protein with a distal enhancer element. Genes and Dev. 5, 265–277.

    Article  PubMed  CAS  Google Scholar 

  • Jost, L. (1942). Über Gefäßbrücken. Z. Bot. 38, 161–215.

    CAS  Google Scholar 

  • Kablar, B., Vignali, R., Menotti, L., Pannese, M., Andreazzoli, M., Polo, C., Giribaldi, M.G., Boncinelli, E., and Barsacchi, G. (1996). Xotx genes in the developing brain of Xeno-puslaevis. Mech. Dev. 55, 145–158.

    Article  PubMed  CAS  Google Scholar 

  • Kalebic, T., Garbisa, S., Glase, B., and Liotta, L.A. (1983). Basement membran collagen: degradation by migrating endothelial cells. Science 221, 281–283.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A.J., and Meinhardt, H. (1994). Biological pattern-formation—from basic mechanisms to complex structures. Rev. Mod. Phys. 66, 1481–1507.

    Article  Google Scholar 

  • Kuziora, M.A., and Minnis, W. (1988). Autoregulation of a Drosophila homeotic selector gene. Cell 55, 477–180.

    Article  PubMed  CAS  Google Scholar 

  • Ladher, R., Mohun, T.J., Smith, J.C., and Snape, A.M. (1996). Xom—a Xenopus homeobox gene that mediates the early effects of BMP-4. Development 122, 2385–2394.

    PubMed  CAS  Google Scholar 

  • Lee, E.C., Hu, X.X., Yu, S.Y., and Baker, N.E. (1996). The scabrous gene encodes a secreted glycoprotein dimer and regulates proneural development in Drosophila eyes. Molec. Cell. Biol. 16, 1179–1188.

    PubMed  CAS  Google Scholar 

  • Lee, K.J., Cox, E.C., and Goldstein, R.E. (1996). Competing patterns of signaling activity in dictyostelium—discoideum. Phys. Rev. Lett. 76, 1174–1177.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.F., Egelhoff, T.T., Mahasneh, A., and Cote, G.P. (1996). Cloning and characterization of a dictyostelium myosin-i heavy-chain kinase activated by cdc42 and rac. J. Biol. Chem. 271, 27044–27048.

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R. (1964). Growth control of nerve cells by a protein factor and its antiserum. Science 143, 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, J., Slack, J., and Wolpert, L. (1977). Thresholds in development. J. Theor. Biol. 65, 579–590.

    Article  PubMed  CAS  Google Scholar 

  • Macagno, E.R., Lopresti, V., and Levinthal, C. (1973). Structure and development of neuronal connections in isogenetic organisms: variations and similarities in the optic system of Daphnia magua. Proc. Natl. Acad. Sci. 70, 57–61.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.R. (1995). Why thumbs are up. Nature 374, 410–411.

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt, H. (1976). Morphogenesis of lines and nets. Differentiation 6, 117–123.

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt, H. (1977). A model of pattern formation in insect embryogenesis. J. Cell Sci. 23, 117–139.

    Google Scholar 

  • Meinhardt, H. (1978). Space-dependent cell determination under the control of a morphogen gradient. J. Theor. Biol. 74, 307–321.

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt, H. (1982). Models of biological pattern formation. Academic Press, London.

    Google Scholar 

  • Meinhardt, H. (1983a). A boundary model for pattern formation in vertebrate limbs. J. Embryol. Exp. Morphol. 76, 115–137.

    PubMed  CAS  Google Scholar 

  • Meinhardt, H. (1983b). Cell determination boundaries as organizing regions for secondary embryonic fields. Dev. Biol 96, 375–385.

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt, H. (1989). Models for positional signalling with application to the dorsoventral patterning of insects and segregation into different cell types. Development (Suppl.) 169–180.

    Google Scholar 

  • Meinhardt, H. (1992). Pattern-formation in biology—a comparison of models and experiments. Rep. Prog. Phys. 55, 797–849.

    Article  Google Scholar 

  • Meinhardt, H. (1995). The algorithmic beauty of sea shells (with PC-software). Springer, Heidelberg, New York.

    Google Scholar 

  • Meinhardt, H., and Gierer, A. (1974). Applications of a theory of biological pattern formation based on lateral inhibition. J. Cell Sci. 15, 321–346.

    PubMed  CAS  Google Scholar 

  • Millauer, B., Wizigmann-Voos, S., Schnürch, H., Martinez, R., Møller, N.P.H., Risau, W., and Ullrich, A. (1993). High affinity VEGF binding and developmental expression suggest fik-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835–846.

    Article  PubMed  CAS  Google Scholar 

  • Moos, M., Wang, S.W., and Krinks, M. (1995). Anti-dorsalizing morphogenetic protein is a novel tgf-beta homolog expressed in the spemann organizer. Development 121, 4293–4301.

    PubMed  CAS  Google Scholar 

  • Moses, M.A., Sudhalter, J., and Langer, R. (1990). Identification of an inhibitor of neovascularization from cartilage. Science 248, 1408–1410.

    Article  PubMed  CAS  Google Scholar 

  • Nakao, T., Ishizawa, A., and Ogawa, R. (1988). Observation of vascularization in the spinal cord of mouse embryos, with special reference to development of boundary membranes and perivascular spaces. Anat. Rec. 221, 663–677.

    Article  PubMed  CAS  Google Scholar 

  • Niehrs, C., Steinbeisser, H., and De Robertis, E.M. (1994). Mesodermal patterning by a gradient of the vertebrate homeobox gene goosecoid. Science 263, 817–820.

    Article  PubMed  CAS  Google Scholar 

  • Pardanaud, L., Altmann, C., Kitos, P., Dieterlen-Lievre, F., and Buck, C.A. (1987). Vasculogenesis in the early qual blastodisc as studied with monoclonal antibodies recognizing endothelial cells. Development 100, 339–349.

    PubMed  CAS  Google Scholar 

  • Plate, K.H., Breier, G., Weich, H.A., and Risau, W. (1992). Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 359, 845–848.

    Article  PubMed  CAS  Google Scholar 

  • Poole, T.J., and Coffin, J.D. (1989). Vasculogenesis and angiogenesis: two distinct morphogeneic mechanisms establish embryonic vascular pattern. J. Exp. Zool 251, 224–231.

    Article  PubMed  CAS  Google Scholar 

  • Regulski, M., Dessain, S., Minnis, N., and Minnis, W. (1991). High-affinity binding-sites for the deformed protein are required for the function of an autoregulatory enhancer of the deformed gene. Genes Dev. 5, 278–286.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W., and Flamme, I. (1995). Vasculogenesis. Annu. Rev. Cell Dev. Biol. 11, 73–91.

    Article  PubMed  CAS  Google Scholar 

  • Risau, W., Sariola, H., Zerwes, H.G., Sasse, J., Ekblom, P., Kemler, R., and Doetschman, T. (1988). Vasculogenesis and angiogenesis in embryonic stem cell-derived embryoid bodies. Development 102, 471–478.

    PubMed  CAS  Google Scholar 

  • Samakovlis, C., Hacohen, N., Manning, G., Sutherland, D.C., Guillemin, K., and Krasnow, M.A. (1996). Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 122, 1395–1407.

    PubMed  CAS  Google Scholar 

  • Sander, K. (1976). Formation of the basic body pattern in insect embryogenesis. Adv. Insect Physiol. 12, 125–238.

    Article  Google Scholar 

  • Schier, A.F., and Gehring, W.J. (1992). Direct homeodomain-DNA interaction in the autoregulation of the fushi tarazu gene. Nature 356, 804–807.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J.E., Dassow, G.V., and Kimelmann, D. (1996). Regulation of dorsoventral patterning: the ventralizing effect of the novel homeobox gene Vox. Development 122, 1711–1721.

    PubMed  CAS  Google Scholar 

  • Schmidt, U., Beyer, C., Oestreicher, A.B., Reisert, I., Schilling, K., and Pilgrim, C. (1996). Activation of dopaminergic d-1 receptors promotes morphogenesis of developing striatal neurons. Neuroscience 74, 453–160.

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Merker, S., and Smith, J.C. (1995). Mesoderm formation in response to brachyury requires fgf signaling. Curr. Biol. 5, 62–67.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen, H., and Barde, Y.A. (1980). Physiology of the nerve growth factor. Physiol. Rev. 60, 1284–1334.

    PubMed  CAS  Google Scholar 

  • Tornero, P., Conejero, V., and Vera, P. (1996). Phloem-specific expression of a plant homeobox gene during secondary phases of vascular development. Plant J. 9, 639–648.

    Article  PubMed  CAS  Google Scholar 

  • Udolf, G., Lüer, K., Bossing, T., and Technau, G.M. (1995). Commitment of the CNS progenitors along the dosroventral axis of Drosophila neuroectoderm. Science 269, 1278–1281.

    Article  Google Scholar 

  • Vincent, J.P., and Lawrence, PA. (1994). It takes three to distalize. Nature 372, 132–133.

    Article  PubMed  CAS  Google Scholar 

  • Von Bubnoff, A., Schmidt, J.E., and Kimelman, D. (1996). The Xenopus-laevis homeobox gene xgbx-2 is an early marker of anteroposterior patterning in the ectoderm. Mech. Dev. 54, 149–160.

    Article  Google Scholar 

  • Weindel, K., Martinybaron, G., Weich, H.A., and Marme, D. (1994). Mitogenic and chemotactic response of endothelial cells to human recombinant vegf (121), vegf (165), plgf-1 amd plgf-2. J. Cell. Biochem. 1994, 322–322.

    Google Scholar 

  • Wiggles worth, V.B. (1954). Growth and regeneration in the tracheal system on an insect Rhodnius prolixus (Hemipter). Quart. J. Microsc. Sci. 95, 115–137.

    Google Scholar 

  • Wigglesworth, V.B. (1959). The role of the epidermal cells in the “migration” of tracheoles in Rhodnius prolixus (hemipter). J. Exp. Biol. 36, 632–640.

    Google Scholar 

  • Wilting, J., Birkenháger, R., Eichmann, A., Kurz, H., Martiny-Baron, G., Marné, D., Marthy, J.E.G., Christ, B., and Weich, H.A. (1996). VEGF121 induces proliferation of vascular endothelial cells and expression of flk-1 without affecting lymphatic vessels of the chorioallantoic membrane. Dev. Biol. 176, 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser

About this chapter

Cite this chapter

Meinhardt, H. (1996). Models for the Formation of Netlike Structures. In: Little, C.D., Mironov, V., Sage, E.H. (eds) Vascular Morphogenesis: In Vivo, In Vitro, In Mente. Cardiovascular Molecular Morphogenesis. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4156-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4156-0_12

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8678-3

  • Online ISBN: 978-1-4612-4156-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics