Classification globale des formes différentielles transitives sur la sphère S5

  • Francisco Javier Turiel
Conference paper
Part of the Progress in Mathematics book series (PM, volume 145)


In this work we study the global models of a r-form ω, on the sphere S 5, which is transitive, i.e. we assume that for each p Є S 5 and each υ Є T P S 5 there exists a vector field X on S 5 such that L x ω = 0 and X( p ) = υ. For volume forms (Moser theorem), closed 3-forms, non closed 2-forms and some non closed 3-forms, one explicitly obtains all their global models.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Allday et S. Halperin, Lie group actions on spaces of finite rank, Quar. J. Math. Oxford Ser. 28 (1978), 69–76.MathSciNetGoogle Scholar
  2. [2]
    E. Ghys, Feuilletages riemanniens sur les variétés simplement connexes, Anal. Inst. Fourier 34 (4) (1984), 203–223.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    J. Eells et N.H. Kuiper, Manifolds which are like projective planes, Publ. Mat. I.H.E.S. 14 (1962), 181–222.zbMATHGoogle Scholar
  4. [4]
    M.H. Freedman et F. Quinn, Topology of 4-manifolds, Princeton Univ. Press, Princeton, New Jersey, 1990.Google Scholar
  5. [5]
    M. Gromov, Peudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    P. Molino, Riemannian Foliations, Birkhâuser, Basel, Progress in Math. 73, 1988.Google Scholar
  7. [7]
    C.H. Taubes, The Seiberg-Witten and the Gromov invariants, Math. Res. Letters 2 (1995), 221–238.MathSciNetzbMATHGoogle Scholar
  8. [8]
    C.H. Taubes, SW ⇒ Gr. From the Seiberg-Witten equations to pseudoholomorphic curves, (preprint).Google Scholar

Copyright information

© Birkhäuser Boston 1997

Authors and Affiliations

  • Francisco Javier Turiel
    • 1
  1. 1.Geometría y Topología, Facultad de Ciencias, Ap. 59Universidad de MálagaMálagaSpain

Personalised recommendations