Holonomy Groups of Solvable Lie Foliations

  • Gaêl Meigniez
Part of the Progress in Mathematics book series (PM, volume 145)


Following C. Ehresmann, to every foliated manifold one associates a pseudogroup of transformations that represents the transverse structure of the foliation. Conversely, every pseudogroup comes from a foliated manifold.


Holonomy Group Algebraic Integer Nonempty Open Subset Compact Generation Foliated Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B1]
    R. Bieri, Gruppen mit Poincaré-Dualitàt, Comment. Math. Helv. 47 (1972), 373–396.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [B2]
    R. Bieri, The geometric invariants of a group — a survey with emphasis on the homotopical approach, Proc. Conf. on Geometric Methods in Group Theory, Sussex, 1991.Google Scholar
  3. [BS1]
    R. Bieri, R. Strebel: Valuations and Finitely Presented Metabelian Groups, Proc. London Math. Soc. 41 (3) (1980), 439–464.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [BS2]
    R. Bieri, R. Strebel: A geometric invariant for nilpotent-by-abelian-by-finite groups, Journal of Pure and Appl. Algebra 25 (1982), 1–20.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [BNS]
    R. Bieri, W. D. Neumann, R. Strebel, A geometric invariant of discrete groups, Invent. Math. 90 (1987), 451–477.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [Car]
    Y. Carrière, Sur la croissance des feuilletages de Lie, Pub. IRMA, Lille VI (3) (1984).Google Scholar
  7. [Cav]
    V. Cavalier, pseudogroupes complexes quasi parallélisables de dimension 1 Ann. Inst. Fourier, Grenoble 44 (5) (1994), 1–27.MathSciNetGoogle Scholar
  8. [E1]
    C. Ehresmann, Sur les espaces localement homogènes, L’enseignement Mathématique 5–6 (1936), 317–333.Google Scholar
  9. [E2]
    C. Ehresmann, Structures locales, Annali di Mat. (1954), 133–142.Google Scholar
  10. [F]
    E. Fédida, Feuilletages de Lie, feuilletages du plan, thèse, Strasbourg (1973),L.N.M. 352, 183–195.Google Scholar
  11. [G]
    E. Ghys, Groupes d’holonomie des feuilletages de Lie, Indag. Math. 47 (2) (1985).Google Scholar
  12. [Ha1]A. Haefliger, Groupoïde d’holonomie et classifiants, in: Structures transverses des feuilletages, Toulouse 1982, Astérisque 116 (1984), 70–97.Google Scholar
  13. [Ha2]
    A. Haefliger: pseudogroups of Local Isometries. in Proc. Vth Coll. in Diff. Geom., ed. L. A. Cordero, Research Notes in Math. 131, Pitman (1985), 174–197.Google Scholar
  14. [He]
    R. Hermann: A sufficient condition that a mapping of Riemannian manifolds be a fiber bundle, Proc. AMS 11 (1960), 236–242.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [M1]
    G. Meigniez, Actions de groupes sur la droite et feuilletages de codimension 1, thèse, Univ. Claude Bernard-Lyon I (1988).Google Scholar
  16. [M2]
    G. Meigniez, Sous-groupes de génération compacte des groupes de Lie résolubles, preprint Math. Univ. Paris 7, 33 (1992).Google Scholar
  17. [M3]
    G. Meigniez, Feuilletages de Lie résolubles, Annales de la faculté des sciences de Toulouse IV (4) (1995), 1–17.Google Scholar
  18. S. Matsumoto, N. Tsuchiya: Lie Affine Foliations on 4-Manifolds, preprint.Google Scholar
  19. [R]
    B. L. Reinhart, Foliated manifolds with bundle-like metrics, Ann. of Math. 69 (1) (1959), 119–132.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [T]
    D. Tischler, On fibering certain foliated manifolds over S 1, Topology 9 (1970), 153–154.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [VW]
    O. Veblen, J.H.C. Whitehead, A set of axioms for Differential Geometry, Proc. Nat. Acad. Sci. 17 (1931), 551–561.zbMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1997

Authors and Affiliations

  • Gaêl Meigniez
    • 1
  1. 1.Mathématiques, Institut Girard DesarguesUniversité Claude Bernard-Lyon 1Villeurbanne CedexFrance

Personalised recommendations