Skip to main content

A Morse Theoretic Proof of Poisson Lie Convexity

  • Conference paper
Integrable Systems and Foliations

Part of the book series: Progress in Mathematics ((PM,volume 145))

Abstract

Let K be a connected compact Lie group that acts on the connected compact symplectic manifold (X, ω) preserving the symplectic form. If for every ξ in the Lie algebra p of K, the vector field ξx(x) = d/dt| t=o exp(tξ) · x is Hamiltonian relative to a function, say Hξ, then the map Φ : Xp* (to the dual p* of p) defined by

$$H_\xi (x) = \left\langle {\xi ,\Phi (x)} \right\rangle $$

is called momentum mapping for the action of K. If the momentum mapping is equivariant relative to the given action of K on X and the coadjoint action of K on p*, the action is called Hamiltonian. A remarkable property of this map was discovered by Guillemin-Sternberg [GS1,GS2] and Kirwan [Ki2]. It asserts that if T is a maximal torus of K and t *+ is a positive Weyl chamber, then Φ(X) ∩ t *+ is a convex polytope. This theorem was first proved as follows. The image Φ(X) ∩ t *+ was shown to be a finite union of compact convex polytopes in [GS1], and a convex polytope for X a Kähler manifold [GS2]. From the partial result in [GS1], Kirwan [Ki2]deduced convexity by appealing to her Morse theory (developed in [Ki1]) for||Φ||2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Chemla and Y. Karshon, Convexity of the moment map for nonabelian compact groups; a proof by M. Condevaux, P. Dazord, P. Molino. Unpublished lecture notes, MIT, February 1991.

    Google Scholar 

  3. M. Condevaux, P. Dazord, P. Molino, Geometrie du moment, in Séminaire Sud-Rhodanien, Lyon, 1988.

    Google Scholar 

  4. J. J. Duistermaat, On the similarity between the Iwasawa projection and the diagonal part, Bull. Soc. Math. Fr., 2e série, Mémoire 15 (1984), 129–138.

    MathSciNet  MATH  Google Scholar 

  5. J. J. Duistermaat, J. A. C. Kolk, V. S. Varadarajan, Functions, flows, and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups, Comp. Math. 49 (1983), 309–398.

    MathSciNet  MATH  Google Scholar 

  6. H. Flaschka and T. Ratiu, A Convexity Theorem for Poisson Actions of Compact Lie groups, to appear in Ann. Scient. Ec. Norm. Sup., t. 29, 1996.

    Google Scholar 

  7. H. Flaschka and T. Ratiu, Convexity and Gelfand-Tsetlin coordinates, in preparation.

    Google Scholar 

  8. V. L. Ginzburg and A. Weinstein, Lie-Poisson structure on some Poisson Lie groups, J. AMS 5 (1992), 445–453.

    MathSciNet  MATH  Google Scholar 

  9. V. Guillemin and S. Sternberg, Convexity properties of the momentum mapping I, Invent. Math. 67 (1982), 491–513.

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Guillemin and S. Sternberg, Convexity properties of the momentum mapping II, Invent. Math. 77 (1984), 533–546.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.

    MATH  Google Scholar 

  12. J. Hilgert, K.-H. Neeb, W. Plank, Symplectic convexity theorems and coadjoint orbits, Comp. Math. 94 (1994), 129–180.

    MathSciNet  MATH  Google Scholar 

  13. A. Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76 (1954), 620–630.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Horn, On the eigenvalues of a matrix with prescribed singular values, Proc. AMS 5 (1954), 4–7.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Horn, Eigenvalues of sums of Hermitian matrices, Pac. J. Math. 12 (1962), 225–241.

    MathSciNet  MATH  Google Scholar 

  16. T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der Mathematischen Wissenschaften, Band 132, Springer Verlag, New York-Berlin-Heidelberg, 1966.

    Google Scholar 

  17. F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes 31, Princeton University, 1984.

    MATH  Google Scholar 

  18. F. C. Kirwan, Convexity properties of the momentum mapping III, Invent. Math. 77 (1984), 547–552.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Kostant, On convexity, the Weyl group, and the Iwasawa decomposition, Ann. Sei. École Norm. Sup. 6 (1973), 413–455.

    MathSciNet  MATH  Google Scholar 

  20. J.-H. Lu, Multiplicative and Affine Poisson Structures on Lie Groups, Ph. D. dissertation, University of California at Berkeley, 1990.

    Google Scholar 

  21. J.-H. Lu, Momentum mappings and reduction of Poisson actions, in Proc. of the Sem. Sud-Rhodanien de Géometrie á Berkeley, 1989, Springer Verlag MSRI Series, 1991.

    Google Scholar 

  22. J.-H. Lu and T. Ratiu, On the nonlinear convexity theorem of Kostant, J. AMS 4 (1991), 349–363.

    MathSciNet  MATH  Google Scholar 

  23. J.-H. Lu, A. Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Diff. Geom. 31 (1990), 510–526.

    MathSciNet  Google Scholar 

  24. J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, Springer Verlag, New York-Berlin-Heidelberg, 1994.

    MATH  Google Scholar 

  25. A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979.

    MATH  Google Scholar 

  26. I. Schur, Uber eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie, Sitzungsber. der Berliner Math. Gesellschaft 22 (1923), 9–20.

    Google Scholar 

  27. R. Sjamaar, Convexity properties of the moment mapping re-examined, preprint August 1994.

    Google Scholar 

  28. H. Weyl, Inequalities between two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 408–411.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this paper

Cite this paper

Flaschka, H., Ratiu, T. (1997). A Morse Theoretic Proof of Poisson Lie Convexity. In: Albert, C., Brouzet, R., Dufour, J.P. (eds) Integrable Systems and Foliations. Progress in Mathematics, vol 145. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4134-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4134-8_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8668-4

  • Online ISBN: 978-1-4612-4134-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics