Skip to main content

Singularity Theory and Bifurcation Phenomena in Differential Equations

  • Conference paper
Topological Nonlinear Analysis II

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 27))

Abstract

The main objective in singularity theory is to characterize within the class of smooth functions f: ℝn → ℝm those functions which are stable under small perturbations, i.e., to find those functions f which have the property that any nearby smooth function f is diffeomorphically equivalent to f. This reduces to a local problem, and then to the problem of studying the Taylor expansion of f and trying to determine which terms of the expansion guarantee such a diffeomorphic equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ambrosetti, G. Prodi, On the inversion of some differentiate mappings between Banach spaces, Ann. Mat. Pura Appi. 93 (1972), 231–246.

    Article  MATH  MathSciNet  Google Scholar 

  2. V.I. Arnold, Singularities of smooth mappings, Russian Math. Surveys 23 (1968), 1–43, (translated from Uspehi Mat. Nauk. 23 (1968), 3–44).

    Article  Google Scholar 

  3. F. Balboni, The preparation theorem on Banach spaces, Università Roma II preprint

    Google Scholar 

  4. M.S. Berger, Nonlinearity and Functional Analysis, Academic Press, New York (1967)

    Google Scholar 

  5. M.S. Berger, P.C. Church, Complete integrability and perturbation of a nonlinear Dirichlet problem I, Indiana Univ. Math. J. 28 (1979), 935–952. II, ibid. 29 (1980), Erratum, ibid. 30 (1981), 799.

    Article  MATH  MathSciNet  Google Scholar 

  6. M.S. Berger, P.C. Church, J.G. Timourian, Folds and cusps in Banach spaces, with applications to nonlinear partial differential equations, I, Indiana Univ. Math. J. 34 (1985), 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  7. M.S. Berger, E. Podolak, On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J. 24 (1975), 837–846.

    Article  MATH  MathSciNet  Google Scholar 

  8. M.J. Beeson, A.J. Tromba, The cusp catastrophe of Thom in the bifurcation of minimal surfaces, Manuscr. Math. 46 (1984), 273–308.

    Article  MATH  MathSciNet  Google Scholar 

  9. J.M. Boardman, Singularities of differentiable maps, Publ. Math. I.H.E.S. 33 (1967), 21–57.

    MATH  MathSciNet  Google Scholar 

  10. Y. Borisovich, V. Zvyagin, Y. Sapronov, Nonlinear Fredholm maps and the Leray-Schauder degree theory, Russ. Math. Surveys 32 (4) (1977).

    Google Scholar 

  11. J. Biich, Bifurkation von Minimalflâchen und elementare Katastrophen, Manuscr. Math. 55 (1986), 307–341.

    Article  Google Scholar 

  12. V. Cafagna, Global invertibility and finite solvability, Nonlinear Funct. Anal., Lecture Notes Pure Appl. Math. 121, Ed. P.S. Milojević, Marcel Dekker, New York, 1990.

    Google Scholar 

  13. V. Cafagna, F. Donati, Un résultat global de multiplicité pour un problème différentiel non linéaire du premier ordre, C.R. Acad. Sci. Paris, Ser. I. Math. 300 (1985), 523–526.

    MATH  MathSciNet  Google Scholar 

  14. V. Cafagna, F. Donati, Singularity theory of Fredholm maps and the number of solutions to some nonlinear first order differential equations, peprint

    Google Scholar 

  15. V. Cafagna, F. Doanti, Solutions périodiques de l’équation de Riccati: un résultat global de multiplicité pour un problème non compact, C. R. Acad. Sci. Paris Ser. I. Math. 309 (1989), 153–156.

    MATH  MathSciNet  Google Scholar 

  16. V. Cafagna, G. Tarantello, Multiple solutions for some semilinear elliptic equations, Math. Ann. 276 (1987), 643–656.

    Article  MATH  MathSciNet  Google Scholar 

  17. K.C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhàuser, Boston, 1993.

    MATH  Google Scholar 

  18. S.T. Cheng, Eigenfunctions and nodal sets, Comm. Math. Helu. 51 (1979), 43–55.

    Article  Google Scholar 

  19. P.T. Church, E.N. Dancer, J.G. Timourian, The structure of a nonlinear elliptic operator, Trans. AMS 338 (1993), 1–42.

    Article  MATH  MathSciNet  Google Scholar 

  20. P.T. Church, J.G. Timourian, The singular set of a nonlinear elliptic operator Michigan Math. J. 35 (1988), 197–213.

    Article  MATH  MathSciNet  Google Scholar 

  21. P.T. Church, J.G. Timourian, Global fold maps in differential and integral equations, Nonlin. Anal TMA 18 (1992), 743–758.

    Article  MATH  MathSciNet  Google Scholar 

  22. P.T. Church, J.G. Timourian, Global cusp maps in differential and integral equations, Nonlin. Anal. TMA 20 (1993), 1319–1343.

    Article  MATH  MathSciNet  Google Scholar 

  23. P.T. Church, J.G. Timourian, Global structure for nonlinear operators in differential and integral equations I. Folds, II. Cusps, in this volume.

    Google Scholar 

  24. E.A. Coddington, N. Lewinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, (1955)

    MATH  Google Scholar 

  25. R. Courant, D. Hilbert, Methods of Mathematical Physics Vol. 1, J. Wiley, New York, 1989

    Book  Google Scholar 

  26. E.N. Dancer, Degenerate critical points, homotopy indices and Morse inequalities, J. Reine Angewandte Math. 350 (1984), 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  27. C.L. Dolph, Nonlinear integral equations of Hammer stein-type, Trans. AMS 66 (1949), 289–307.

    Article  MATH  MathSciNet  Google Scholar 

  28. J. Douglas, Solution to the problem of Plateau, Trans. AMS 33 (1931), 263–321.

    Article  Google Scholar 

  29. L. Euler, De curvis elasticis, Additamentum I in: Methodus Inveniendi Lineas Cwrvas, Maximi Minimivi Proprietate Gaudentes, Sive Solutio Probematis Isoperi-metrici Latissimo Sensu Acceptia, Bousquet, Lausanne and Geneva, 1744, Opera Omnia, Ser. I., vol. 24, Füssli, Zürich, 1952, 231–297.

    Google Scholar 

  30. D.G. de Figueiredo, S. Solimini, A variational approach to superlinear elliptic problems, Comm. PDE 9 (1984), 699–717.

    Article  MATH  Google Scholar 

  31. M. Golubitsky, V. Guillemin, Stable Mappings and Their Singularities, Springer-Verlag, New York, 1973.

    MATH  Google Scholar 

  32. S. Fucik, Boundary value problems with jumping nonlinearities, Casopis Pest. Mat. 101 (1975), 69–87.

    MathSciNet  Google Scholar 

  33. T. Galouët, O, Kavian, Résultats d’existence et de non existence pour certain problèmes demilinéaires à l’infini, Ann. Fac. Sc. Toulouse 3 (1981), 201–246

    Article  Google Scholar 

  34. F. Giannoni, A.M. Micheletti, Some remarks about multiplicity results for some semilinear elliptic problems by singularities theory, Rend. Mat Ser. VII 8 (1988), 367–384.

    MATH  MathSciNet  Google Scholar 

  35. F. Giannoni, A.M. Micheletti, On the number of solutions of some ordinary periodic boundary value problems by their geometrical properties, Ann. Mat. pura appl. (IV) 150 (1991), 89–127.

    Article  MathSciNet  Google Scholar 

  36. F. Giannoni, A.M. Micheletti, On a bifurcation problem near a double eigenvalue, preprint

    Google Scholar 

  37. D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1993

    Google Scholar 

  38. M. Golubitsky, V. Guillemin, Stable Mappings and Their Singularities, Springer-Verlag, New York, 1973.

    MATH  Google Scholar 

  39. M. Golubitsky, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. I, Appl. Math. Sci. 51, Springer-Verlag, New York, 1985

    MATH  Google Scholar 

  40. M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. II, Appl. Math. Sci. 69, Springer-Verlag, New York, 1988

    Book  MATH  Google Scholar 

  41. H. Hofer, Variational and topological methods in partially ordered Hilbert spaces, Math. Annalen 261 (1981), 493–514.

    Article  MathSciNet  Google Scholar 

  42. A. Lazer, P.J. McKenna, On a conjecture related to the number of solutions of a nonlinear Dirichlet problem, Proc. Roy. Soc. Edinb. 95A (1983), 275–283.

    MathSciNet  Google Scholar 

  43. Lazzeri, A.M. Micheletti, An application of singularity theory to nonlinear differentiate mappings between Banach spaces, Nonlin. Anal. TMA 11 (1987), 795–808.

    Article  MATH  MathSciNet  Google Scholar 

  44. D. Lupo, A.M. Micheletti, An application to bifurcation problems of cusps in Banach spaces, Diff. Int. Equ. 4 (1991), 1023–1040.

    MATH  MathSciNet  Google Scholar 

  45. D. Lupo, A. Vanderbauwhede, Cusp points and pitchfork interactions in equivari-ant bifurcation problems, Diff. Int. Equ. 6 (1993), 721–756.

    MATH  MathSciNet  Google Scholar 

  46. B. Malgrange, Le théorème de préparation en géometrie différentiable, Sém. H. Cartan, 15e année: 1962–63, Exposés 11, 12, 13, 22.

    Google Scholar 

  47. A. Manes, A.M. Micheletti, Un’estensione délia teoria variazionale classica degli autovalori per operatori ellitici del secondo ordine, Boll. UMI 7 (1973), 285–301.

    MATH  MathSciNet  Google Scholar 

  48. J. Mather, Stability of C mappings. I: The division theorem, Ann. of Math. 87 (1968), 89–104.

    Article  MATH  MathSciNet  Google Scholar 

  49. J. Mather, Stability of C mappings. VI: The nice dimensions, Proc. of Liverpool Singlarities Symp. I, Lecture Notes in Math. 192 (1971), 207–253.

    Article  MathSciNet  Google Scholar 

  50. H.P. McKean, Singularities of a simple elliptic operator, J. Diff. Geom. 25 (1987), 157–165.

    MATH  MathSciNet  Google Scholar 

  51. H.P. McKean, Correction to “Singularities of a simple elliptic operator”, J. Diff. Geom. 36 (1992), p. 255.

    MATH  MathSciNet  Google Scholar 

  52. H.P. McKean, Curvature of an ∞-dimensional manifold related to Hill’s equation, J. Differential Geom. 17 (1982), 523–529.

    MATH  MathSciNet  Google Scholar 

  53. H.P. McKean, J.C. Scovel, Geometry of some simple differential operators, Ann. Sc. Norm. Sup. Pisa 13 (4) (1986), 299–346.

    MATH  MathSciNet  Google Scholar 

  54. A.M. Micheletti, About differentiate mappings with singularities between Banach spaces, Suppl. Boll. Un. Mat. Ital. 1 (1980), 287–301.

    MATH  MathSciNet  Google Scholar 

  55. P. Michor, The division theorem on Banach spaces, Oesterr. Ak. Wiss. II–189–1–3 (1980), 1–18.

    MathSciNet  Google Scholar 

  56. J. Milnor, Morse theory, Princeton University Press, Princeton, N.J., 1969.

    Google Scholar 

  57. B. Morin, Formes canoniques des singularités d’une application différentiable, Comptes Rendus Acad. Sci. 260 (1965), 5662–5665, 6503–6506.

    MathSciNet  Google Scholar 

  58. M. Morse, Relations between the critical points of a real function of n independent variables, Trans. Amer. Math. Soc. 27, (1925), 345–396.

    MATH  MathSciNet  Google Scholar 

  59. L. Nirenberg, A proof of the Malgrange Preparation Theorem, Proc. of Liverpool Singularities Symp. 1, Lecture Notes in Math. 192, (1971), 97–105.

    Article  MathSciNet  Google Scholar 

  60. R. Osserman, A Survey of Minimal Surfaces, Van Nostrand, New York, (1969).

    MATH  Google Scholar 

  61. B. Ruf, On nonlinear elliptic problems with jumping nonlinearities, Ann. Mat. Pura Appl. 128, (1980).

    Google Scholar 

  62. B. Ruf, Singularity theory and the geometry of a nonlinear elliptic equation, Ann. Sc. Norm. Sup. Pisa, Cl. Sc. ser. 4 17, 1990), 1–33.

    MATH  MathSciNet  Google Scholar 

  63. B. Ruf, Multiplicity results for nonlinear elliptic equations, Nonlinear Analysis, Function Spaces and Appl. 3, Teuhner Texte Math. 93, Teubner Verlag, Leipzig, (1986), 109–138.

    Google Scholar 

  64. B. Ruf, Forced secondary bifurcation in an elliptic boundary value problem, Diff. Int. Equ. 5 (1992), 793–804.

    MATH  MathSciNet  Google Scholar 

  65. B. Ruf, Higher singularities and forced secondary bifurcation, SIAM J. Math. Anal.

    Google Scholar 

  66. H. Ruchert, A uniqueness result for Enneper’s minimal surface, Ind. Univ. Math. J. 30 (1981), 427–431.

    Article  MATH  MathSciNet  Google Scholar 

  67. Th. Runst, Singularity theory in quasi-Banach spaces with applications to semilinear elliptic problems, Math. Nachr. 51 (1996), 317–342.

    MathSciNet  Google Scholar 

  68. S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–867.

    Article  MATH  MathSciNet  Google Scholar 

  69. R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier 6 (1955–56), 43–87.

    Article  MathSciNet  Google Scholar 

  70. R. Thom, Stabilité Structurelle et Morphogénèse, W.A. Benjamin, Inc., Reading, Mass., (1972).

    Google Scholar 

  71. F. Tomi, On the local uniqueness of the problem of least area, Arch. Rat. Mech. Anal. 52 (1973), 312–318.

    Article  MATH  MathSciNet  Google Scholar 

  72. H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, Basel, (1983), and Akad. Verlagsges. Geest & Portig, Leipzig, 1983.

    Book  Google Scholar 

  73. A.J. Tromba, A sufficient condition for a critical point to be a minimum and its applications to Plateau’s problem, Math. Annalen 263 (1983), 303–312.

    Article  MATH  MathSciNet  Google Scholar 

  74. K. Uhlenbeck, Generic properties of eigenfunctions, Amer. J. Math. 98 (1976), 1059–1078.

    Article  MATH  MathSciNet  Google Scholar 

  75. H. Whitney, On singularities of mappings of Euclidean spaces I. Mappings of the plane into the plane, Ann. Math. 62 (1955), 374–410.

    Article  MATH  MathSciNet  Google Scholar 

  76. K. Weierstrass, Untersuchungen über Flächen, deren Mittlere Krümmung überall null ist, Mathematische Werke von Karl Weierstrass 3, Mayer und Müller, Berlin, (1894), 39–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this paper

Cite this paper

Ruf, B. (1997). Singularity Theory and Bifurcation Phenomena in Differential Equations. In: Matzeu, M., Vignoli, A. (eds) Topological Nonlinear Analysis II. Progress in Nonlinear Differential Equations and Their Applications, vol 27. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4126-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4126-3_7

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8665-3

  • Online ISBN: 978-1-4612-4126-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics