Skip to main content

Global Structure for Nonlinear Operators in Differential and Integral Equations I. Folds

  • Conference paper
Topological Nonlinear Analysis II

Abstract

For the classic Dirichlet problem

$$\left\{ {\begin{array}{*{20}c} {\Delta u = g} & {\text{in}} & \Omega \\ {u = 0} & {\text{on}} & {\partial \Omega } \\ \end{array} } \right.$$

for Ω a bounded domain in ℝn, for each g there exists a unique solution u, where u and g are in appropriate spaces H and H′, respectively. In fact, Δ−1 : gu is a bounded linear isomorphism (onto) and so Δ and Δ−1 are homeomorphisms. In particular, for each \(\bar g\) there is a unique point \(\bar u\) in Δ−1 (\(\bar g\)), and if g is near \(\bar g\), then the corresponding solution u = Δ−1(g) is near \(\bar u\).

The authors were partially supported by NSERC Contract #A7357. P. T. Church is grateful to the University of Alberta for its hospitality during the summer of 1995.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, Tensor Analysis and Applications, Addison-Wesley Publishing Company, Inc., 1983.

    MATH  Google Scholar 

  2. R. Abraham and J. Robbin, Transversal Mappings and Flows, W. A. Benjamin, Inc., New York, 1967.

    Google Scholar 

  3. R. A. Adams, Sobolev spaces, Academic Press, New York, 1975.

    MATH  Google Scholar 

  4. H. Amann and P. Hess, A multiplicity result for a class of elliptic boundary value problems, Proc. Roy. Soc. Edinburgh A 84 (1979), 145–151.

    MATH  MathSciNet  Google Scholar 

  5. A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings between Banach spaces, Ann. Mat. Pura Appl. 93 (1972), 231–246.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge University Press, Cambridge, England, 1993.

    Google Scholar 

  7. H. Berestycki, Le nombre de solutions de certain problèmes sémi-linéaires elliptiques, J. Funct. Anal. 40 (1981), 1–29.

    Article  MATH  MathSciNet  Google Scholar 

  8. M.S. Berger, Nonlinearity and Functional Analysis, Academic Press, New York, 1977.

    MATH  Google Scholar 

  9. M.S. Berger, Mathematical Structures of Nonlinear Science, Kluwer Academic Publishers, Hingham, MA, 1990.

    Book  MATH  Google Scholar 

  10. M. S. Berger and P. T. Church, Complete integrability and perturbation of a nonlinear Dirichlet problem, I. Indiana Univ. Math. J. 28 (1979), 935–952.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. S. Berger and P. T. Church, Erratum, Indiana Univ. Math. J., 30 (1981), 799.

    Article  MathSciNet  Google Scholar 

  12. M. S. Berger and P. T. Church, Complete integrability and perturbation of a nonlinear Dirichlet problem, II. Indiana Univ. Math. J. 29 (1980), 715–735.

    Article  MATH  MathSciNet  Google Scholar 

  13. M.S. Berger, P. T. Church and J. G. Timourian, Folds and cusps in Banach spaces, with applications to partial differential equations, I. Indiana Univ. Math. J. 34 (1985), 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  14. M.S. Berger, P. T. Church and J. G. Timourian, Folds and cusps in Banach spaces, with applications to partial differential equations, II. Trans. Amer. Math. Soc. 307 (1988), 225–244.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. S. Berger and E. Podolak, On solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J. 24 (1975), 837–846.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. S. Berger and M. Schechter, Bifurcation from equilibria for certain infinite-dimensional dynamical systems, pp. 133–138 in Mathematics of Nonlinear Science, edited by M. S. Berger, Proceedings of an AMS Special Session held January 11–14, 1989, Contemporary Mathematics 108, Amer. Math. Soc., Providence, RI, 1990.

    Google Scholar 

  17. M. S. Berger and G. Sun, On bifurcation solutions of nonlinear telegraph equations, C. R. Acad. Sci. Paris Sér. I. Math 316 (1993), 253–256.

    MATH  MathSciNet  Google Scholar 

  18. J. Blot, The rank theorem in infinite dimension, Nonlinear Anal. 10 (1986), 1009–1020.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. G. Borisovic, V. G. Zyagin and J. I. Sapronov, Nonlinear Fredholm maps and the Leray Schauder Theory, Russian Math. Surveys 32:4 (1977), 1–54.

    Article  Google Scholar 

  20. H. Brezis, Analyse Fonctionnelle: Théorie et Applications, Masson, Paris, 1983.

    MATH  Google Scholar 

  21. F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (New Series) 9 (1983), 1–39.

    Article  MATH  MathSciNet  Google Scholar 

  22. V. Cafagna, Global invertibility and finite solvability, pp. 1–30 in Nonlinear Functional Analysis, edited by P. S. Milojevic (Newark, New Jersey, 1987), Lecture Notes in Pure and Applied Mathematics, Vol. 121, Dekker, New York, 1990.

    Google Scholar 

  23. V. Cafagna and F. Donati, Singularity theory and the number of solutions to some nonlinear differential problems, preprint.

    Google Scholar 

  24. V. Cafagna and F. Donati, Solutions périodiques de l’équation de Riccati: un rèsult global de multiplicité pour un problème non compact, C. R. Acad. Sci. Paris Sér I. 309 (1989), 153–156.

    MATH  MathSciNet  Google Scholar 

  25. V. Cafagna and G. Tarantello, Multiple solutions for some semilinear elliptic equations, Math. Ann. 276 (1987), 643–656.

    Article  MATH  MathSciNet  Google Scholar 

  26. R. Chiappinelli, J. Mawhin and R. Nugari, Generalized Ambrosetti-Prodi conditions for nonlinear two-point boundary value problems, J. Differential Equations 69 (1987), 422–434.

    Article  MATH  MathSciNet  Google Scholar 

  27. P. T. Church, Differentiable maps with small critical set, Proc. Sympos. Pure Math. 40 (1993), Part 1, 225–231.

    Google Scholar 

  28. P. T. Church, E. N. Dancer and J. G. Timourian, The structure of a nonlinear elliptic operator, Trans. Amer. Math. Soc. 338 (1993), 1–42.

    Article  MATH  MathSciNet  Google Scholar 

  29. P. T. Church and J. G. Timourian, Global fold maps in differential and integral equations, Nonlinear Anal. 18 (1992), 743–758.

    Article  MATH  MathSciNet  Google Scholar 

  30. P. T. Church and J. G. Timourian, Oriented global fold maps in differential and integral equations, Nonlinear Anal., (to appear).

    Google Scholar 

  31. J. Cronin, Fixed Points and Topological Degree in Nonlinear Analysis, American Mathematical Society, Providence, 1964.

    MATH  Google Scholar 

  32. M. L. Curtis, Cartesian products with intervals, Proc. Amer. Math. Soc. 12 (1961), 819–820.

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Damon, Applications of singularity theory to the solutions of nonlinear equations, pp. 178–302 of Topological Nonlinear Analysis: Degree, Singularity, and Variations, M. Matzeu and A. Vignoli, editors, Birkhaiiser, Boston, MA, 1995.

    Google Scholar 

  34. J. Damon, A theorem of Mather and the local structure of nonlinear Fredholm maps, pp. 339–352 of Nonlinear Functional Analysis and Its Applications., edited by F. E. Browder, American Mathematical Society, Proc. Sympos. Pure Math. 45, Part 1, 1986.

    Google Scholar 

  35. E. N. Dancer, On the range of certain weakly nonlinear elliptic partial differential equations, J. Math. Pures Appi. 57 (9) (1978), 351–366.

    MathSciNet  Google Scholar 

  36. C. L. Dolph, Nonlinear integral equations of the Hammerstein type, Trans. Amer. Math. Soc. 60 (1949), 289–307.

    Article  MathSciNet  Google Scholar 

  37. J. Eells, Jr., A setting for global analysis, Bull. Amer. Math. Soc. 72 (1966), 751–807.

    Article  MathSciNet  Google Scholar 

  38. M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), 357–453.

    MATH  MathSciNet  Google Scholar 

  39. S. Fučik, Remarks on a result of A. Ambrosetti and G. Prodi, Boll. Un. Mat Ital. 11 (1975), 259–267.

    MATH  MathSciNet  Google Scholar 

  40. T. Gallouet and O. Kavian, Resultats d’existence et de nonexistence pour certains problems demilineàries a l’infini, Ann. Fac. Sci. Toulouse 3 (1981), 201–246. Abstracted in C. R. Acad. Sc. Paris A 291 (1980), 193–196.

    Article  MATH  MathSciNet  Google Scholar 

  41. F. Giannoni and A. M. Micheletti, On the number of solutions of some ordinary periodic boundary value problems by their geometrical properties, Ann. Math. Pura. Appi. 160 (1991), 89–127.

    Article  MATH  MathSciNet  Google Scholar 

  42. F. Giannoni and A. M. Micheletti, Some remarks about multiplicity results for some semilinear elliptic problems by singularity theory, Rend. Mat. Appi. 8 (7) (1988), 367–384.

    MATH  MathSciNet  Google Scholar 

  43. F. Giannoni and A. M. Micheletti, On a bifurcation problem near a double eigenvalue, Quaderni dell’Istituto di Matematiche Applicate “U. Dini,” Facoltà di Ingegneria, Università di Pisa, June 1992.

    Google Scholar 

  44. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second Edition, Springer-Verlag, Berlin, 1983.

    MATH  Google Scholar 

  45. M. Golubitsky and V. Guillemin, Stable Mappings and their Singularities, Springer-Verlag, New York, 1973.

    MATH  Google Scholar 

  46. M. Golubitsky and D. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. 1, Appl. Math. Sei. 51, Springer-Verlag, New York, 1985.

    Google Scholar 

  47. M. Golubitsky, I. Stewart and D. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. 2, Appl. Math. Sci. 69, Springer-Verlag, New York, 1988.

    Google Scholar 

  48. R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 65–222.

    Article  MATH  MathSciNet  Google Scholar 

  49. A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. 54 (1929), 117–176.

    Article  MathSciNet  Google Scholar 

  50. H. Hofer, Variational and topological methods in partially ordered Hilbert spaces, Math. Ann. 261 (1982), 493–514.

    Article  MATH  MathSciNet  Google Scholar 

  51. J. L. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567–597.

    Article  MATH  MathSciNet  Google Scholar 

  52. P. Korman and T. Ouyang, Exact multiplicity results for two classes of periodic maps, preprint.

    Google Scholar 

  53. N. H. Kuiper, Variétés Hilbertiennes: Aspects Géométriques, Les Presses de L’Université de Montréal, Montréal, Canada, 1971.

    MATH  Google Scholar 

  54. S. Lang, Differential Manifolds, Addison-Wesley, Reading, MA, 1972.

    MATH  Google Scholar 

  55. F. Lazzeri and A.M. Micheletti, An application of singularity theory to nonlinear differentiate mappings between Banach spaces, Nonlinear Anal. 11 (1987), 795–808.

    Article  MATH  MathSciNet  Google Scholar 

  56. A. C. Lazer and P.J. McKenna, Multiplicity of solutions of nonlinear boundary value problems with nonlinear it ies crossing several higher eigenvalues, J. Reine Angew. Math. 368 (1986), 184–200.

    Article  MATH  MathSciNet  Google Scholar 

  57. J. Leray and J. Schauder, Topologie et équations fonctionelles, Ann. Sei. École Norm. Sup. 51 (1934), 45–78.

    MATH  MathSciNet  Google Scholar 

  58. N. G. Lloyd, Degree Theory, Cambridge University Press, New York, 1978.

    MATH  Google Scholar 

  59. L. C. Lu, Singularity Theory and an Introduction to Catastrophe Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1976.

    MATH  Google Scholar 

  60. I. Mandhyan, The diagonalization and computation of some nonlinear integral operators, Nonlinear Anal. 23 (1994), 447–466.

    Article  MATH  MathSciNet  Google Scholar 

  61. I. Mandhyan, Examples of global normal forms for some simple nonlinear integral operators, Nonlinear Anal. 13 (1989), 1057–1066.

    Article  MATH  MathSciNet  Google Scholar 

  62. W. S. Massey, Algebraic Topology: An Introduction, Springer-Verlag, New York, 1967 (fourth corrected printing, 1977).

    MATH  Google Scholar 

  63. J. Mawhin, First order ordinary differential equations with several periodic solutions, Z. Angew. Math. Phys. 38 (1987), 257–265.

    Article  MATH  MathSciNet  Google Scholar 

  64. H. P. McKean, Singularities of a simple elliptic operator, J. Differential Geometry 25 (1987), 157–165; correction, J. Differential Geometry 36 (1992), 255.

    MATH  MathSciNet  Google Scholar 

  65. H. P. McKean and J. C. Scovel, Geometry of some simple nonlinear differential operators, Ann. Scuola Norm. Sup. Pisa CI. Sc. 13 (4) (1986), 299–346.

    MATH  MathSciNet  Google Scholar 

  66. J. R. Munkres, Elementary Differential Topology, Annals of Mathematics Studies 54, Princeton University Press, Princeton, NJ, 1966.

    Google Scholar 

  67. J. R. Munkres, Obstructions to imposing differentiate structures, Illinois J. Math. 8 (1964), 361–376.

    MATH  MathSciNet  Google Scholar 

  68. L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Sciences, New York, 1974.

    MATH  Google Scholar 

  69. E. Podolak, On the range of operator equations with an asymptotically nonlinear term, Indiana U. Math. J. 25 (1976), 1127–1137.

    Article  MATH  MathSciNet  Google Scholar 

  70. E. H. Rothe, Introduction to Various Aspects of Degree Theory in Banach Spaces, Mathematical Surveys and Monographs 23, American Mathematical Society, Providence, RI, 1986.

    Google Scholar 

  71. H. L. Roy den, Real Analysis, Third Edition, MacMillan Publishing Company, New York, 1988.

    MATH  Google Scholar 

  72. B. Ruf, Remarks and generalizations related to a recent multiplicity result of A. Lazer and P. McKenna, Nonlinear Anal. 9 (1985), 1325–1330.

    Article  MATH  MathSciNet  Google Scholar 

  73. B. Ruf, Singularity theory and bifurcation phenomena in differential equations, this volume.

    Google Scholar 

  74. B. Ruf, Singularity theory and the geometry of a nonlinear elliptic equation, Ann. Scuola Norm. Sup. Pisa, CI. Sc. 17 (4) (1990), 1–33.

    MATH  MathSciNet  Google Scholar 

  75. B. Ruf, Forced secondary bifurcation in an elliptic boundary value problem, Differential Integral Equations 5 (1992), 793–804.

    MATH  MathSciNet  Google Scholar 

  76. B. Ruf, Higher singularities and forced secondary bifurcation, SIAM J. Math. Anal., (to appear).

    Google Scholar 

  77. B. Ruf, On nonlinear elliptic boundary value problems with jumping nonlinearities, Ann. Mat. Pura Appi. 4 (1981), 133–151.

    Article  MathSciNet  Google Scholar 

  78. T. B. Rushing, Topological Embeddings, Academic Press, New York, 1973.

    MATH  Google Scholar 

  79. J. C. Scovel, Geometry of some nonlinear differential operators, Ph.D. Thesis, New York University, 1983.

    Google Scholar 

  80. S. Smale, An infinite dimensional version of Sard’s Theorem, Amer. J. Math. 87 (1965), 861–867.

    Article  MATH  MathSciNet  Google Scholar 

  81. S. Solimini, Some remarks on the number of solutions of some nonlinear elliptic problems, Ann. Inst. Henri Poincaré 2 (1985), 143–156.

    MATH  MathSciNet  Google Scholar 

  82. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  83. H. Whitney, On singularities of mappings of Euclidean spaces, I. Mappings of the plane into the plane, Ann. of Math. 62 (1955), 374–410.

    Article  MATH  MathSciNet  Google Scholar 

  84. H. Whitney, Differentiability of the remainder term, Duke Math. J. 10 (1943), 153–158.

    Article  MATH  MathSciNet  Google Scholar 

  85. E. Zeidler, Nonlinear Functional Analysis and its Applications, I. Fixed-point Theorems, Springer-Verlag, New York, 1986.

    Google Scholar 

  86. W. Ziemer, Weakly Differentiable Functions, Springer-Verlag, New York, 1989.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this paper

Cite this paper

Church, P.T., Timourian, J.G. (1997). Global Structure for Nonlinear Operators in Differential and Integral Equations I. Folds. In: Matzeu, M., Vignoli, A. (eds) Topological Nonlinear Analysis II. Progress in Nonlinear Differential Equations and Their Applications, vol 27. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4126-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4126-3_3

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8665-3

  • Online ISBN: 978-1-4612-4126-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics