Skip to main content

Degree Theory: Old and New

  • Conference paper
Topological Nonlinear Analysis II

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 27))

Abstract

The theory of degree has a long history which is a cascade of successive generalizations. Presumably, the oldest notion is the degree of a (smooth) map u from S 1 into S 1 (S 1 = the unit circle). The degree of u, also called winding number, counts “how many times u covers its range taking into account the algebraic multiplicity.” More generally, a smooth (say C 1) map u from S 1 into ℂ, such that u ≠ 0 on S 1 has a degree which may be computed through the very classical integral formula

$$\deg u = \frac{1} {{2\pi i}}\int_{S^1 } {\frac{{\dot u}} {u}}$$
((1.1))

which measures the “algebraic change of phase” of u as the variable goes around S 1 once. Similarly, if Γ is a simple curve in ℝ2 and u is a smooth map from Γ into S 1, then its degree can be computed as

$$\deg (u,\Gamma ) = \frac{1} {{2\pi }}\int_\Gamma {u \times u_\tau ,}$$
((1.2))

where × denotes the cross product of vectors in ℝ2 (here S 1 is viewed as a subset of ℝ2, not ℂ)and u τ denotes the tangential derivative of u along Γ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R. A. Adams [1], Sobolev Spaces, Academic Press, 1975.

    MATH  Google Scholar 

  • F. Bethuel [1], The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (1991), 153–206.

    Article  MathSciNet  MATH  Google Scholar 

  • F. Bethuel, H. Brezis, and F. Hélein [1], Ginzburg—Landau Vortices, Birkäuser, 1994.

    Book  MATH  Google Scholar 

  • F. Bethuel and X. Zheng [1], Density of smooth functions between two manifolds in Sobolev spaces, J. Fund. Anal. 80 (1988), 60–75.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Boutet de Monvel-Berthier, V. Georgescu, and R. Purice [1], A boundary value problem related to the Ginzburg—Landau model, Comm. Math. Phys. 141 (1991), 1–23.

    Article  MathSciNet  Google Scholar 

  • H. Brezis [1], “Large harmonic maps in two dimensions,” in: Nonlinear Variational Problems, A. Marino et al., eds., Pitman, 1985.

    Google Scholar 

  • H. Brezis [2], “Metastable harmonic maps,” in: Metastability and Incompletely Posed Problems, S. Antman, J. Ericksen, D. Kinderlehrer and I. Miiller, eds., IMA Series, Springer, pp. 35–42, 1987.

    Google Scholar 

  • H. Brezis [3], Lectures on the Ginzburg—Landau vortices, Scuola Normale Superiore, Pisa, 1997.

    Google Scholar 

  • H. Brezis and J. M. Coron [1], Large solutions for harmonie maps in two dimensions, Comm. Math. Phys. 92 (1983), 203–215.

    Article  MathSciNet  MATH  Google Scholar 

  • H. Brezis and L. Nirenberg [1], Degree theory and BMO; Part I: Compact manifolds without boundaries, Selecta Mathematica, New Series 1 (1995), 197–263.

    Article  MathSciNet  MATH  Google Scholar 

  • H. Brezis and L. Nirenberg [2], Degree theory and BMO; Part II: Compact manifolds with boundaries, Selecta Mathematica, New Series 2 (1996), 1–60.

    Article  MathSciNet  Google Scholar 

  • H. Brezis and L. Nirenberg [3], Nonlinear Functional Analysis and Applications, book in preparation.

    Google Scholar 

  • R. R. Coifman and Y. Meyer [1], “Une généralisation du théorème de Calderón sur l’intégrale de Cauchy,” in: Fourier Analysis, Proc. Sem. at El Escorial, Asoc. Mat. Española, Madrid, 1980, 88–116.

    Google Scholar 

  • R. G. Douglas [1], Banach Algebra Techniques in Operator Theory, Acad. Press, 1972.

    Google Scholar 

  • C. Fefferman and E. Stein [1], H p spaces of several variables, Acta Math . 129 (1972), 137–193.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Giaquinta and S. Hildebrandt [1], A priori estimates for harmonic mappings, J. Reine Angew. Math. 336 (1982), 124–164.

    Article  MathSciNet  Google Scholar 

  • F. John and L. Nirenberg [1], On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Jones [1], Extension Theorems for BMO, Indiana Univ. Math. J. 29 (1980), 41–66.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Jost [1], The Dirichlet problem for harmonic maps from a surface with boundary onto a 2-sphere with nonconstant boundary value, J. Diff. Geom. 19 (1984), 393–401.

    MathSciNet  MATH  Google Scholar 

  • J. Leray and J. Schauder [1], Topologie et équations fonctionnelles, Ann. Sci. Ecole Norm. Sup. 51 (1934), 45–78.

    MathSciNet  MATH  Google Scholar 

  • L. Nirenberg [1], Topics in nonlinear functional analysis, Courant Institute Lecture Notes (1974).

    Google Scholar 

  • D. Sarason [1], Trans. Amer. Math. Soc. 207 (1975), 391–405.

    Article  MathSciNet  MATH  Google Scholar 

  • R. Schoen and K. Uhlenbeck [1], Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom. 18 (1983), 253–268.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this paper

Cite this paper

Brezis, H. (1997). Degree Theory: Old and New. In: Matzeu, M., Vignoli, A. (eds) Topological Nonlinear Analysis II. Progress in Nonlinear Differential Equations and Their Applications, vol 27. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4126-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4126-3_2

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8665-3

  • Online ISBN: 978-1-4612-4126-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics