Advertisement

The Jacobi Method: A Tool for Computation and Control

  • U. Helmke
  • K. Hüper
Part of the Systems & Control: Foundations & Applications book series (PSCT, volume 22)

Abstract

The interaction between numerical linear algebra and control theory has crucially influenced the development of numerical algorithms for linear systems in the past. Since the performance of a control system can often be measured in terms of eigenvalues or singular values, matrix eigenvalue methods have become an important tool for the implementation of control algorithms. Standard numerical methods for eigenvalue or singular value computations are based on the QR-algorithm. However, a number of computational problems in control and signal processing are not amenable to standard numerical theory or cannot be easily solved using current numerical software packages. Various examples can be found in the digital filter design area. For instance, the task of finding sensitivity optimal realizations for finite word length implementations requires the solution of highly nonlinear optimization problems for which no standard numerical solution of algorithms exist.

Keywords

Global Minimum Homogeneous Space Global Convergence Cholesky Factor Balance Realization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.F. Atiyah. Convexity and commuting Hamiltonians. Bull London Math. Soc. 14 (1992), 1–15.MathSciNetCrossRefGoogle Scholar
  2. [2]
    H. Azad and J.J. Loeb. On a theorem of Kempf and Ness. Ind. Univ. Math. J. 39(1) (1990), 61–65.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    R.W. Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems. Proc. IEEE of the 27th Conference on Decision and Control 1988. 799–803.Google Scholar
  4. R.W. Brockett. See also Lin. Algebra & Applic. 146 (1991), 79–91.MathSciNetCrossRefMATHGoogle Scholar
  5. [4]
    J. Dehaene. Continuous-time Matrix Algorithms Systolic Algorithms and Adaptive Neural Networks. Ph.D. Dissertation. Katholieke Universiteit. Leuven, Germany. 1995.Google Scholar
  6. [5]
    M. Gevers and G. Li. Parametrizations in Control, Estimation and Filtering Problems. London: Springer, 1993.CrossRefMATHGoogle Scholar
  7. [6]
    V. Guillemin and S. Sternberg. Convexity properties of the moment mapping. Inventiones Math. 67 (1982), 491–513.MathSciNetCrossRefMATHGoogle Scholar
  8. [7]
    U. Helmke. A several complex variables approach to sensitivity analysis and structured singular values. J. of Mathematical Systems, Estimation, and Control 2(3) (1992), 339–351.MathSciNetMATHGoogle Scholar
  9. [8]
    U. Helmke. Balanced realizations for linear systems: a variational approach. SIAM J. Control and Optimization 31(1) (1993), 1–15.MathSciNetCrossRefMATHGoogle Scholar
  10. [9]
    U. Helmke and J.B. Moore. Singular-value decomposition via gradient and self-equivalent flows. Lin. Algebra & Applic. 169 (1992), 223–248.MathSciNetCrossRefMATHGoogle Scholar
  11. [10]
    U. Helmke and J.B. Moore. Optimization and Dynamical Systems. London: Springer, 1994.CrossRefGoogle Scholar
  12. [11]
    K. Hüper. Structure and convergence of Jacobi-type methods for matrix computations. Ph.D. Dissertation. Technical University of Münich. Munich, Germany. 1996.Google Scholar
  13. [12]
    K. Hüper and U. Helmke. Structure and convergence of Jacobi-type methods. To appear Num. Math.Google Scholar
  14. [13]
    C.G.J. Jacobi. Über ein leichtes Verfahren, die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen. Crelle’s J. für die reine und angewandte Mathematik 30 (1846), 51–94.CrossRefMATHGoogle Scholar
  15. [14]
    G. Kempf and L. Ness. The length of vectors in representation spaces. Lect. Notes in Math. 732 (1979), 233–243.Google Scholar
  16. [15]
    A.J. Laub, M.T. Heath, C.C. Paige, and R.C. Ward. Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Transactions on Automatic Control 32(2) (1987), 115–122.CrossRefMATHGoogle Scholar
  17. [16]
    R. Mahony. Optimization algorithms on homogeneous spaces. Ph.D. Dissertation. Australian National University. Canberra, Australia. 1994.Google Scholar
  18. [17]
    C.T. Mullis and R.A. Roberts. Synthesis of minimum roundoff noise fixed point digital filters. IEEE Transactions on Circuits and Systems 23 (1976), 551–562.MathSciNetCrossRefMATHGoogle Scholar
  19. [18]
    R.J. Ober. Balanced realizations: canonical form, parametrization, model reduction. Int. J. Control 46(2) (1987), 643–670.MathSciNetCrossRefMATHGoogle Scholar
  20. [19]
    M.G. Safonov and R.Y. Chiang. A Schur method for balanced-truncation model reduction. IEEE Transactions on Automatic Control 34(7) (1989), 729–733.MathSciNetCrossRefMATHGoogle Scholar
  21. [20]
    S.T. Smith. Geometric optimization methods for adaptive filtering. Ph.D. Dissertation. Harvard University. Cambridge, Massachusetts. 1993.Google Scholar
  22. [21]
    L. Thiele. On the sensitivity of state-space systems. IEEE Transactions on Circuits and Systems 33 (1986), 502–510.MathSciNetCrossRefMATHGoogle Scholar
  23. [22]
    W. Yan and J.B. Moore. On L 2—sensitivity minimization of linear state-space systems. IEEE Transactions on Circuits and Systems 39 (1992), 641–648.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • U. Helmke
    • 1
  • K. Hüper
    • 1
  1. 1.Department of MathematicsUniversity of WürzburgWürzburgGermany

Personalised recommendations