Introduction

  • Peter W. O’Hearn
  • Robert D. Tennent
Part of the Progress in Theoretical Computer Science book series (PTCS)

Abstract

In recent years there has been a remarkable convergence of interest in programming languages based on ALGOL 60. Researchers interested in the theory of procedural and object-oriented languages discovered that ALGOL 60 shows how to add procedures and object classes to simple imperative languages in a general and clean way. And, on the other hand, researchers interested in purely functional languages discovered that ALGOL 60 shows how to add imperative mechanisms to functional languages in a way that does not compromise their desirable properties.

Keywords

Microwave Bedding Aliasing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [Abr93]
    S. Abramsky. Computational interpretations of linear logic. Theoretical Computer Science, 111(l-2):3–57, April 12 1993.MathSciNetMATHCrossRefGoogle Scholar
  2. [Abr94]
    S. Abramsky. Interaction categories and communicating sequential processes. In Roscoe [Ros94], chapter 1, pages 1–16.Google Scholar
  3. [AW85]
    S. K. Abdali and D. S. Wise. Standard, storeless semantics for Algol-style block structure and call-by-name. In A. Melton, editor, Mathematical Foundations of Programming Semantics, volume 239 of Lecture Notes in Computer Science, pages 1–19, Manhattan, Kansas, April 1985. Springer-Verlag, Berlin (1986).Google Scholar
  4. [Bac59]
    J. W. Backus. The syntax and semantics of the proposed international algebraic language of the Zurich ACM-GAMM Conference. In Information Processing, Proceedings of the International Conference on Information Processing, pages 125–131, Paris, June 1959.Google Scholar
  5. [Bac78]
    J. Backus. Can programming be liberated from the von Neumann style? a functional style and its algebra of programs. Comm. ACM, 21(8):613–641, August 1978.MathSciNetMATHCrossRefGoogle Scholar
  6. [BC82]
    G. Berry and P-L. Curien. Sequential algorithms on concrete data structures. Theoretical Computer Science, 20:265–321, 1982.MathSciNetMATHCrossRefGoogle Scholar
  7. [Bro93]
    S. Brookes. Full abstraction for a shared variable parallel language. In Proceedings, 8th Annual IEEE Symposium on Logic in Computer Science, pages 98–109, Montreal, Canada, 1993. IEEE Computer Society Press, Los Alamitos, California.Google Scholar
  8. [Bur70]
    R. M. Burstall. Formal description of program structure and semantics in first-order logic. In B. Meitzer and D. Michie, editors, Machine Intelligence 5, pages 79–98. Edinburgh University Press, Edinburgh, 1970.Google Scholar
  9. [BW88]
    R. Bird and P. Wadler. Introduction to Functional Programming. Prentice-Hall International, London, 1988.Google Scholar
  10. [CD78]
    M. Coppo and M. Dezani. A new type assignment for A-terms. Archiv. Math. Logik, 19:139–156,1978.MATHCrossRefGoogle Scholar
  11. [Chu41]
    A. Church. The Calculi of Lambda Conversion. Princeton University Press, Princeton, 1941.Google Scholar
  12. [Cla79]
    E. M. Clarke. Programming language constructs for which it is impossible to obtain good Hoare-like axiom systems. J. ACM, 26(1):129–147,1979.MATHCrossRefGoogle Scholar
  13. [DHW76]
    R. M. De Morgan, I. D. Hill, and B. A. Wichmann. A supplement to the Algol 60 Revised Report. The Computer Journal, 19(3):276–288, 1976.MATHCrossRefGoogle Scholar
  14. [FMS96]
    M. Fiore, E. Moggi, and D. Sangiorgi. A fully abstract model for the π-calculus. In [LIC96], pages 43–54.Google Scholar
  15. [HJ82]
    W. Henhapl and C. B. Jones. Algol 60. In D. Bjørner and C. B. Jones, editors, Formal Specification and Software Development, pages 141–173. Prentice-Hall International, London, 1982.Google Scholar
  16. [HJ89]
    C. A. R. Hoare and C. B. Jones, editors. Essays in Computing Science. Prentice-Hall International, 1989.MATHGoogle Scholar
  17. [H094]
    J. M. E. Hyland and C.–H. L. Ong. On full abstraction for PCF: I, II and III. Submitted for publication, 1994.Google Scholar
  18. [Hoa69]
    C. A. R. Hoare. An axiomatic basis for computer programming. Comm. ACM, 12(10):576–580 and 583, 1969.MATHCrossRefGoogle Scholar
  19. [Hoa74]
    C. A. R. Hoare. Hints on programming-language design. In C. Bunyan, editor, Computer Systems Reliability, volume 20 ofState of the Art Report, pages 505–34. Pergamon/Infotech, 1974. Also pages 193–216 of [HJ89].Google Scholar
  20. [Hud89]
    P. Hudak. Conception, evolution, and application of functional programming languages. Computing Surveys, 31:359–411, 1989.CrossRefGoogle Scholar
  21. [Hug89]
    J. Hughes. Why functional programming matters. The Computer Journal, 32:98–107, 1989.CrossRefGoogle Scholar
  22. [Knu67]
    D. E. Knuth. The remaining troublespots in Algol 60. Comm. ACM, 10(10):611–617, 1967.MathSciNetMATHCrossRefGoogle Scholar
  23. [Lan64]
    P. J. Landin. A formal description of Algol 60. In Steel [Ste64], pages 266–294.Google Scholar
  24. [Lan65]
    P. J. Landin. A correspondence between Algol 60 and Church’s lambda notation. Comm. ACM, 8(2,3):89–101 and 158–165, 1965.MathSciNetCrossRefGoogle Scholar
  25. [LIC96]Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, New Jersey, USA, 1996. IEEE Computer Society Press, Los Alamitos, California.Google Scholar
  26. [LP95]
    J. Launchbury and S. Peyton Jones. State in HASKELL. LISP and Symbolic Computation, 8(4):293–341, December 1995.CrossRefGoogle Scholar
  27. [Mil89]
    R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.MATHGoogle Scholar
  28. [Mor82]
    J. H. Morris. Real programming in functional languages. In J. Darlington, P. Henderson, and D. A. Turner, editors, Functional Programming and its Applications, pages 129–176. Cambridge University Press, Cambridge, England, 1982.Google Scholar
  29. [Mos 74]
    P. Mosses. The mathematical semantics of Algol 60. Technical monograph PRG-12, Oxford University Computing Laboratory, Programming Research Group, Oxford, January 1974.Google Scholar
  30. [MS76]
    R. E. Milne and C. Strachey. A Theory of Programming Language Semantics. Chapman and Hall, London, and Wiley, New York, 1976.MATHGoogle Scholar
  31. [NB+60]
    P. Naur (ed.), J. W. Backus, et al. Report on the algorithmic language Algol 60. Comm. ACM, 3(5):299–314, 1960. Also Numerische Mathematik 2:106–136.Google Scholar
  32. [NB+63]
    P. Naur, J. W. Backus, et al. Revised report on the algorithmic language ALGOL 60. Comm. ACM, 6(1):1–17,1963. Also The Computer Journal 5:349–67, and Numerische Mathematik 4:420–53.CrossRefGoogle Scholar
  33. [0le85]
    F. J. Oles. Type algebras, functor categories and block structure. In M. Nivat and J. C. Reynolds, editors, Algebraic Methods in Semantics, pages 543–573. Cambridge University Press, Cambridge, England, 1985.Google Scholar
  34. [OR95]
    P. W. O’Hearn and U. S. Reddy. Objects, interference, and the Yoneda embedding. In S. Brookes, M. Main, A. Melton, and M. Mislove, editors, Mathematical Foundations of Programming Semantics, Eleventh Annual Conference, volume 1 of Electronic Notes in Theoretical Computer Science, Tulane University, New Orleans, Louisiana, March 29-April 1 1995. Elsevier Science (http://www.elsevier.nl).Google Scholar
  35. [OR96]
    P. W. O’Hearn and J. C. Reynolds. From Algol to polymorphic linear lambda-calculus. Unpublished draft, 1996.Google Scholar
  36. [OT92]
    P. W. O’Hearn and R. D. Tennent. Semantics of local variables. In M. P. Fourman, P. T. Johnstone, and A. M. Pitts, editors, Applications of Categories in Computer Science, volume 177 of London Mathematical Society Lecture Note Series, pages 217–238. Cambridge University Press, Cambridge, England, 1992.Google Scholar
  37. [Plo73]
    G. D. Plotkin. Lambda-definability and logical relations. Memorandum SAIRM-4, School of Artificial Intelligence, University of Edinburgh, October 1973.Google Scholar
  38. [PS93]
    A. Pitts and I. Stark. Observable properties of higher order functions that dynamically create local names, or: What’s new? In A. M. Borzyszkowski and S. Sokolowski, editors, Mathematical Foundations of Computer Science, volume 711 of Lecture Notes in Computer Science, pages 122–140, Gdansk, Poland, 1993. Springer-Verlag, Berlin.Google Scholar
  39. [PW93]
    S. Peyton-Jones and P. Wadler. Imperative functional programming. In Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 71–84, Charleston, South Carolina, 1993. ACM, New York.Google Scholar
  40. [Red94]
    U. S. Reddy. Passivity and independence. In Proceedings, Ninth Annual IEEE Symposium on Logic in Computer Science, pages 342–352, Paris, France, 1994. IEEE Computer Society Press, Los Alamitos, California.Google Scholar
  41. [Rey81]
    J. C. Reynolds. The Craft of Programming. Prentice-Hall International, London, 1981.MATHGoogle Scholar
  42. [Rey83]
    J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A. Mason, editor, Information Processing 83, pages 513–523, Paris, France, 1983. North-Holland, Amsterdam.Google Scholar
  43. [Rey89]
    J. C. Reynolds. Syntactic control of interference, part 2. In G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Delia Rocca, editors, Automata, Languages and Programming, 16th International Colloquium, volume 372 of Lecture Notes in Computer Science, pages 704–722, Stresa, Italy, July 1989. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  44. [Rey93]
    J. C. Reynolds. The discoveries of continuations. L isp and Symbolic Computation, 6(3/4):233–247,1993.CrossRefGoogle Scholar
  45. [Rey94]
    A. W. Roscoe, editor. A Classical Mind, Essays in Honour of C. A. R. Hoare. Prentice-Hall International, 1994.Google Scholar
  46. [Sco69]
    D. S. Scott. A type-theoretical alternative to Cuch, Iswim, Owhy. Privately circulated memo, Oxford University, October 1969. Published in Theoretical Computer Science, 121(1/2):411–440, 1993.Google Scholar
  47. [Soc72a]
    D. S. Scott. Mathematical concepts in programming language semantics. In Proc. 1972 Spring Joint Computer Conference, pages 225–34. AFIPS Press, Montvale, N.J., 1972.Google Scholar
  48. [Sco72b]
    D. S. Scott. Models for various type-free calculi. In P. Suppes et al., editors, Logic, Methodology, and the Philosophy of Science, IV, pages 157–187, Bucharest, 1972. North-Holland, Amsterdam.Google Scholar
  49. [SS71]
    D. S. Scott and C. Strachey. Toward a mathematical semantics for computer languages. In J. Fox, editor, Proceedings of the Symposium on Computers and Automata, volume 21 of Microwave Research Institute Symposia Series, pages 19–46. Polytechnic Institute of Brooklyn Press, New York, 1971. Also Technical Monograph PRG-6, Oxford University Computing Laboratory, Programming Research Group, Oxford.Google Scholar
  50. [Sta85]
    R. Statman. Logical relations and the typed λ-calculus. Information and Computation, 65:85–97, 1985.MathSciNetMATHGoogle Scholar
  51. [Sta96a]
    I. Stark. Categorical models for local names. L isp and Symbolic Computation, 9(1):77–107, feb 1996.CrossRefGoogle Scholar
  52. [Sta96b]
    I.A. Stark. A fully abstract domain model for the π-calculus. In [LIC96], pages 36–42.Google Scholar
  53. [Ste64]
    T. B. Steel, Jr., editor. Formal Language Description Languages for Computer Programming, Proceedings of the IFIP Working Conference, Baden bei Wien, Austria, September 1964. North-Holland, Amsterdam (1966).MATHGoogle Scholar
  54. [Sto77]
    J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. The MIT Press, Cambridge, Massachusetts, and London, England, 1977.Google Scholar
  55. [Str67]
    C. Strachey. Fundamental Concepts in Programming Languages. Unpublished lecture notes, International Summer School in Computer Programming, Copenhagen, August 1967.Google Scholar
  56. [SW74]
    C. Strachey and C. P. Wadsworth. Continuations: a mathematical semantics for handling full jumps. Technical Monograph PRG-6, Oxford University Computing Laboratory, Programming Research Group, Oxford, 1974.Google Scholar
  57. [Ten94]
    R. D. Tennent. Correctness of data representations in ALGOL-like languages. In Roscoe [Ros94], chapter 23, pages 405–417.Google Scholar
  58. [THM83]
    B. A. Trakhtenbrot, J. Y. Halpern, and A. R. Meyer. From denotational to operational and axiomatic semantics for Algol-like languages: an overview. In E. M. Clarke, Jr. and D. Kozen, editors, Logics of Programs 1983, volume 164 of Lecture Notes in Computer Science, pages 474–500, Pittsburgh, PA, 1983. Springer-Verlag, Berlin, 1984.Google Scholar
  59. [vW63]
    A. van Wijngaarden. Generalized Algol. In R. Goodman, editor, Annual Review in Automatic Programming, volume 3, pages 17–26. Pergamon Press, Oxford, 1963.Google Scholar
  60. [vW64]
    A. van Wijngaarden. Recursive definition of syntax and semantics. In Steel [Ste64], pages 13–24.Google Scholar
  61. [vW+69]
    A. van Wijngaarden (ed.) et al. Report on the algorithmic language Algol 68. Numerische Mathematik, 14:79–218, 1969.Google Scholar
  62. [WA85]
    W. W. Wadge and E. A. Ashcroft. L ucid, the Dataflow Programming Language, volume 22 of APIC Studies in Data Processing. Academic Press, London, 1985.Google Scholar
  63. [Wex81]
    R. L. Wexelblat, editor. History of Programming Languages. Academic Press, New York, 1981.MATHGoogle Scholar
  64. [WH66]
    N. Wirth and C. A. R. Hoare. A contribution to the development of Algol. Comm. ACM, 9(6):413–432, June 1966.MATHCrossRefGoogle Scholar
  65. [Wic73]
    B. A. Wichmann. A lgol 60 Compilation and Assessment. Academic Press, London, 1973.Google Scholar
  66. [Wir71]
    N. Wirth. The programming language PASCAL. Acta Informatica, 1:35–63, 1971.MATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1997

Authors and Affiliations

  • Peter W. O’Hearn
    • 1
  • Robert D. Tennent
    • 2
  1. 1.Dept. of Computer ScienceQueen Mary&Westfield CollegeLondonEngland
  2. 2.Dept. of Computing and Information ScienceQueen’s UniversityKingston, OntarioCanada

Personalised recommendations