Skip to main content

Carbon Dioxide Transport by Hemoglobin-Based Blood Substitutes

  • Chapter
Blood Substitutes

Abstract

Carbon dioxide transport by blood is often overlooked when considering the design and clinical potential of cell-free O2 carriers. However, approximately the same amount of CO2is removed from respiring tissue as O2delivered to, and the implications for blood substitutes must be considered, especially in critically ill patients where tissue CO2 build-up could be very high. Approximately 23% of total CO2 is transported as carbamate (i.e. bound to hemoglobin) and is “oxylabile” (the affinity of deoxy hemoglobin for CO2 is higher than that of oxyhemoglobin). In addition to this important role of hemoglobin, red cells are also critical to overall CO2 transport because they contain carbonic anhydrase which permits the rapid hydration of CO2 to bicarbonate and hydrogen ion. Without this enzyme, the hydration reaction would be much slower than the circulation time. Except for αα-hemoglobin, which has reduced CO2 binding, little is known about the effects of crosslinking on CO2 binding. It is of interest to consider how CO2 transport is handled naturally by underwater (crocodiles) and high altitude animals (sheep and goats) who are faced with O2 shortages in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer, C, M. Forster, G. Gros, A. Mosca, M. Perrella, H.S. Rol-lema and D. Vogel. Analysis of bicarbonate binding to crocodilian hemoglobin. J. Biol. Chem. 256: 8429–8435, 1981.

    PubMed  CAS  Google Scholar 

  • Brunet, F., J.P. Mira, M. Belghith, M. Monchi, B. Renaud, L. Fier-obe, I. Hamy, J.F. Dhainaut and J. Dall’ava-Santucci. Extracorporeal carbon dioxide removal technique improves oxygenation without causing overinflation. Am. J. Respir. Crit. Care Med. 149: 1557–1562, 1994.

    PubMed  CAS  Google Scholar 

  • Brunet, F., J.P. Mira, C. Cerf, M. Belghith, O. Soubrane, J.L. Ter-mignon, B. Renaud, L. Fierobe, I, Hamy, M. Monchi, E. Deslande, A. Brusset, and J.F. Dhainaut. Permissive hypercapnia and intravascular oxygenator in the treatment of patients with ARDS. Artif. Organs 18: 826–832, 1994.

    CAS  Google Scholar 

  • Carter, M.J. Carbonic anhydrase: isoenzymes, properties, distribution, and functional significance. Biol Ref 47: 465–513, 1972.

    Article  CAS  Google Scholar 

  • Christensen, J., C. Douglas, J.S. Haldane. The absorption and dissociation of carbon dioxide by human blood. J. Physiol. 48: 244–277, 1914.

    Google Scholar 

  • Davis, J.W., S.R. Shackford and T.L. Holbrook. Base deficit as a sensitive indicator of compensated shock and tissue oxygen utilization. Surg. Gynecol. Obstet. 173: 473–476, 1991.

    PubMed  CAS  Google Scholar 

  • Davis, J.W., S.R. Shackford, R.C. Mackersie, D.B. Hoyt. Base deficit as a guide to volume resuscitation. J. Trauma 28: 1464–1467, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, A.R., N.L. Jones and J.W. Reed. Calculation of whole blood CO2 content. J. Appl. Physiol. 65: 473–477, 1988.

    PubMed  CAS  Google Scholar 

  • Dunham, CM., J.H. Siegel, L. Weireter, M. Fabian, S. Goodarzi, P. Guadalupi, L. Gettings, S.E. Linberg, and T.C. Vary. Oxygen debt and metabolic acidemia as quantitative predictors of mortality and the severity of the ischemic insult in hemorrhagic shock. Crit. Care Med. 19: 231–243, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Dyer, O. Crocodiles help to develop artificial blood. BMJ 310: 211, 1995.

    PubMed  CAS  Google Scholar 

  • Effros, R.M., G. Mason and P. Silverman. Role of perfusion and diffusion in 14CO2 exchange in the rabbit lung. J. Appl. Physiol. 51: 1136–1144, 1981.

    PubMed  CAS  Google Scholar 

  • Gattinoni, L., T. Kolobow, T. Tomlinson, G. Iapichino, M. Samaja, D. White and J. Pierce. Low-frequency positive pressure ventilation with extracorporeal carbon dioxide removal (LEPPV-eccoO2R): an experimental study. Anesth. Analg. 57: 470–477, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Gentilello, L.M., G.J. Jurkovich, K.D. Gubler, D.M. Anardi and R. Heiskell. The intravascular oxygenator (IVOX): preliminary results of a new means of performing extrapulmonary gas exchange. J. Trauma 35: 399–404, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Hannon, J.P., C.E. Wade, CA Bossone, M.M. Hunt, R.I. Coppes and J.A. Loveday. Blood gas and acid-base status of conscious pigs subjected to fixedvolume hemorrhage and resuscitated with hypertonic saline dextran. Circ. Shock 32: 19–29, 1990.

    PubMed  CAS  Google Scholar 

  • Hill, E.P., G.G. Power and L.D. Longo. Mathematical simulation of pulmonary O2 and CO2 exchange. Am. J. Physiol. 224: 904–917, 1973.

    PubMed  CAS  Google Scholar 

  • Hyde, R.W., R. J. M. Puy, W.F. Raub and R.E. Forster. Rate of disappearance of labeled carbon dioxide from the lungs of humans during breath holding: a method for studying the dynamics of pulmonary CO2 exchange. J. Clin. Invest. 47: 1535–1552, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Kesecioglu, J., L. Telci, T. Denkel, A.S. Tutuncu, F. Esen, K. Akpir and B. Lachmann. Comparison of different modes of artificial ventilation with extracorporeal CO2 elimination on gas exchange in an animal model of acute respiratory failure. Adv. Exp. Med. Biol. 317: 893–899, 1992.

    PubMed  CAS  Google Scholar 

  • Klocke RA Carbon dioxide. In The Lung (R.G. Crystal, J.B. West, et al Eds.) New York: Raven Press, 1991, pp. 1233–1239.

    Google Scholar 

  • Knauf PA Anion transport in erythrocytes. In Physiology of Membrane Disorders (T.E. Andreoli, J.F. Hoffman, D.D. Fanestil, and S.G. Schultz, Eds.) New York: Plenum Press, 1986, pp. 191–220.

    Chapter  Google Scholar 

  • Komiyama, N.H., G. Miyazaki, J. Tame and K. Nagai. Transplanting a unique allosteric effect from crocodile into human hemoglobin. Nature 373: 244–246, 1995.

    Article  PubMed  CAS  Google Scholar 

  • McHardy, G.J.R. The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood. Clin. Sci. 32: 299–309, 1967.

    PubMed  CAS  Google Scholar 

  • Mecher, C.E., E.C. Rackow, M.E. Astiz and M.H. Weil. Venous hy-percarbia associated with severe sepsis and systemic hypoperfusion. Crit. Care Med. 18: 585–589, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Morrow, J.S., J.B. Matthew and F.R.N. Gurd. Measurement of CO2 binding: tje 13C NMR method. In Methods in Enzymology (E. Antonini, L. Rossi-Bernardi, and E. Chiancon, Eds.) New York: Academic Press, 1981, pp. 496–510.

    Google Scholar 

  • Perella, M. and L. Rossi-Bernardi. Measurement of CO2 equilibria: The chemical-chromatographic methods. In Methods in Enzymology (E. Antonini, L. Rossi-Bernardi, and E. Chiancon, Eds.) New York: Academic Press, 1981, pp. 487–495.

    Google Scholar 

  • Perrella, M., J.V. Kilmartin, J. Fogg and L. Rossi-Bernardi. CO2 binding to a and (3-NH3 groups studied by selective carbamylation. Nature 256: 759–761, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Tang, W., M.H. Weil, S. Sun, M. Noc, R.J. Gazmuri and J. Bisera. Gastric intramural PCO2 as monitor of perfusion failure during hemorrhagic and anaphylactic shock. J. Appl. Physiol. 76: 572–577, 1994.

    PubMed  CAS  Google Scholar 

  • Vandegriff, K.D., L. Benazzi, M. Ripamonti, M. Perrella, Y.C. Le Tellier, A. Zegna and R.M. Winslow. Carbon dioxide binding to human hemoglobin crosslinked between the alpha chains. J. Biol. Chem. 266: 2697–2700, 1991.

    PubMed  CAS  Google Scholar 

  • Visser, B.F. Pulmonary diffusion of carbon dioxide. Phys. Med. Biol. 5: 155–166, 1960. West, J.B. Effect of slope and shape of dissociation curve on pulmonary gas exchange. Respir. Physiol. 8: 66–85, 1969.

    Article  Google Scholar 

  • Winslow, R.M. A model for red cell O2 uptake. Int. J. Clin. Monit. Corn-put. 2: 81–93, 1985.

    Article  CAS  Google Scholar 

  • Winslow, R.M., M.L. Swenberg, J. Benson, M. Perrella and L. Benazzi. Gas exchange properties of goat hemoglobin A and C. J. Biol. Chem. 264: 4812–4817, 1989.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Winslow, R.M. (1996). Carbon Dioxide Transport by Hemoglobin-Based Blood Substitutes. In: Winslow, R.M., Vandegriff, K.D., Intaglietta, M. (eds) Blood Substitutes. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4114-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4114-0_10

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8659-2

  • Online ISBN: 978-1-4612-4114-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics