Skip to main content

Inositols—Potential roles in insulin action and in diabetes: Evidence from insulin-resistant nonhuman primates

  • Chapter
Lessons from Animal Diabetes VI

Part of the book series: Rev.Ser.Advs.Research Diab.Animals (Birkhäuser) ((RSARDA,volume 6))

Abstract

Myoinositol is an essential component of all animal cells and is found in plants, fungi, and some bacteria.1 According to Billington,2 myoinositol was first identified in cardiac muscle by Scherer in 1850. It is a component of membrane phospholipids, and the function of these membrane phosphoinositides may prove to be important to the action of insulin, as discussed later. Myoinositol, a cyclitol, is the most common of the nine isomers of hexahydroxycyclohexane. Two stereoisomers of myoinositol are D-chiroinositol and L-chiroinositol. In humans myoinositol is found mainly either in its free form or covalently bound to phospholipid, with three principal forms: phosphatidylinositol (PI), phosphatidylinositol-4-P (PIP or PI-4-P), or phosphatidylinositol 4,5-P2 (PI-4,5-P2 or PIP2). The structures of myoinositol, of D-chiroinositol, and of several phosphatidylinositols are shown in Figure 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holub BJ. Metabolism and function of myo-inositol and inositol phospholipids. Ann Rev Nutr 6:563–97, 1986.

    Article  CAS  Google Scholar 

  2. Billington DC. The Inositols. In: The inositol phosphates: Chemical synthesis and biological significance, pp 1–8, 1993. VCH (pub) Weinheim, New York

    Google Scholar 

  3. Hauser G, Finelli VN. The biosynthesis of free and phosphatide myoinositol from glucose by mammalian tissue slices. J Biol Chem 238:3224–28, 1963.

    PubMed  CAS  Google Scholar 

  4. Clements RSJ, Diethelm AG. The metabolism of myo-inositol by the human kidney. J Lab Clin Med 93:210–19, 1979.

    PubMed  Google Scholar 

  5. Helmkamp GMJ: Phosphatidylinositol transfer proteins: Structure, catalytic activity, and physiological function. Chem Phys Lipids 38:3–16, 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Lewin LM, Yannai Y, Sulimovici S, Kraicer PF: Studies on the metabolic role of myo-inositol. Biochem J 156:375–80, 1976.

    PubMed  CAS  Google Scholar 

  7. Holub BJ: Nutritional, biochemical, and clinical aspects of inositol and phosphatidylinositol metabolism. Can J Physiol Pharmacol 62:1–8, 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Burton LE, Wells WW: Studies on the developmental pattern of the enzymes converting glucose 6-phosphate to myo-inositol in the rat. Dev Biol 37:35–42, 1974.

    Article  PubMed  CAS  Google Scholar 

  9. Ostlund REJ, Mill JB, Herskowitz I, et al. D-chiro-inositol metabolism in diabetes mellitus. Proc Natl Acad Sci USA 90:9988–92, 1993.

    Article  PubMed  CAS  Google Scholar 

  10. Goodhart RS. Bioflavonoids. In: Modem nutrition in health and disease. Goodhart RS, Shils ME, eds. Lea & Febiger, Philadelphia, pp 259–67, 1973.

    Google Scholar 

  11. Machlin LJ. Handbook of vitamins: Nutritional, biochemical, and clinical aspects. 1984. M. Dekker (Pub) New York

    Google Scholar 

  12. Caspary WF, Crane RK. Active transport of myo-inositol and its relation to the sugar transport system in hamster small intestine. Biochim Biophys Acta 203:308–16, 1970.

    Article  PubMed  CAS  Google Scholar 

  13. Burton LE, Ray RE, Bradford JR, et al. Myo-inositol metabolism in the neonatal and developing rat fed a myo-inositol-free diet. J Nutr 106:1610–16, 1976.

    PubMed  CAS  Google Scholar 

  14. Clements RS, Reynertson R. Myoinositol metabolism in diabetes mellitus: Effect of insulin treatment. Diabetes 26:215–21, 1977.

    Article  PubMed  CAS  Google Scholar 

  15. Hayashi E, Maeda T, Hasegawa R, Tomita T: The effect of myo-inositol deficiency on lipid metabolism in rats. I. The alteration of lipid metabolism in myo-inositol-deficient rats. Biochim Biophys Acta 360:134–45, 1974.

    PubMed  CAS  Google Scholar 

  16. Hoover GA, Nicolosi RJ, Corey JE, et al. Inositol deficiency in the gerbil: Altered hepatic lipid metabolism and triglyceride secretion. J Nutr 108:1588–94, 1978.

    PubMed  CAS  Google Scholar 

  17. Hayashi E, Maeda T, Tomita T: The effect of myo-inositol deficiency on lipid metabolism in rats. II. The mechanism of triacylgycerol accumulation in the liver of myo-inositol-deficient rats. Biochim Biophys Acta 360:146–55, 1974.

    PubMed  CAS  Google Scholar 

  18. Vohl H: Ueber das Auftreten des Inosits im Ham bei Nierenkrankheiten und die Verwandlung des Diabetes inositus. Arch Physiol 2:410–12, 1858.

    Google Scholar 

  19. Sundler R, Sarcione SL, Alberts AW, Vagelos PR: Evidence against phospholipid asymmetry in intracellular membranes from liver. Proc Natl Acad Sci USA 74:3350–54, 1977.

    Article  PubMed  CAS  Google Scholar 

  20. Perret B, Chap HJ, Douste-Blazy L. Asymetric distribution of arachidonic acid in the plasma membrane of human platelets: A determination using purified phospholipases and a rapid method for membrane isolation. Biochim Biophys Acta 556:434–46, 1979.

    Article  PubMed  CAS  Google Scholar 

  21. Herbette L, Blasie JK, Defoor P, et al. Phospholipid asymmetry in the isolated sarcoplasmic reticulum membrane. Arch Biochem Biophys 234:235–42, 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Mandersloot JG, Roelofsen B, DeGier J. Phosphatidylinositol as the endogenous activator of the (NA+/K+)-ATPase in microsomes of rabbit kidney. Biochim Biophys Acta 508:478–85, 1978.

    Article  PubMed  CAS  Google Scholar 

  23. Low MG, Finean JB: Specific release of plasma membrane enzymes by a phosphatidylinositol-specific phospholipase C. Biochim Biophys Acta 508:565–70, 1978.

    Article  PubMed  CAS  Google Scholar 

  24. Heger HW, Peter HW: Effects of phospholipids in the action of acetyl-CoA carboxylase from rat liver. Zeitschrift fur Naturforschung-Section C- Biosciences. 32:97–100, 1977.

    PubMed  CAS  Google Scholar 

  25. Futerman AH, Low MG, Ackermann KE, et al. Identification of covalently bound inositol in the hydrophobic membrane-anchoring domain of torpedo acetylcholinesterase. Biochem Biophys Res Commun 129:312–17, 1985.

    Article  PubMed  CAS  Google Scholar 

  26. Keough KMW, Thompson W: Soluble and particulate forms of phosphoinositide phosphodiesterase in ox brain. Biochim Biophys Acta 270:324–36, 1972.

    PubMed  CAS  Google Scholar 

  27. Bleasdale JE, Eichberg J, Hauser G: Inositol and phosphoinositides: Metabolism and regulation. 1985. Human Press (Pub) Clifton, NJ

    Book  Google Scholar 

  28. Kirk CJ, Rodrigues LM, Hems DA: The influence of vasopressin and related peptides on glycogen phosphorylase activity and phosphatidylinositol metabolism in hepatocytes. Biochem J 178:493–6, 1979.

    PubMed  CAS  Google Scholar 

  29. Kahn CR, Goldfine AB. Molecular determinants of insulin action. J Diabetes Complications 7:92–105, 1993.

    Article  PubMed  CAS  Google Scholar 

  30. Romero G, Larner J. Insulin mediators and the mechanism of insulin action. Adv Pharmacol 24:21–50, 1993.

    Article  PubMed  CAS  Google Scholar 

  31. Hipps PP, Holland WH, Sherman WR. Identification and measurement of chiro-inositol in the American cockroach, Periplanta americana L. Biochem Biophys Res Commun 46:1903–8, 1972.

    Article  PubMed  CAS  Google Scholar 

  32. Niwa T, Yamamoto N, Maeda K, et al. Gas chromatographic-mass spectrometric analysis of polyols in urine and serum of uremic patients: Identification of new de-oxyalditols and inositol isomers. J Chromatogr 277:25–39, 1983.

    Article  PubMed  CAS  Google Scholar 

  33. Yagihara Y, Salway JG, Hawthorne JN: Incorporation of 32P in vitro into triphosphoinositide and related lipids of rat superior cervical ganglia and vagus nerves. J Neurochem 16:1133–39, 1969.

    Article  PubMed  CAS  Google Scholar 

  34. Greene DA, Jesus PVD, Winegrad AI: Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest 55:1326–36, 1975.

    Article  PubMed  CAS  Google Scholar 

  35. Fukuma M, Carpentier J-L, Orci L, et al. An alteration in internodal myelin membrane structure in large sciatic nerve fibres in rats with acute streptozotocin diabetes and impaired nerve conduction velocity. Diabetologia 15:65–72, 1977.

    Article  Google Scholar 

  36. Mayhew JA, Gillon KRW, Hawthorne JN: Free and lipid inositol, sorbitol and sugars in sciatic nerve obtained post-mortem from diabetic patients and control subjects. Diabetologia 24:13–5, 1983.

    Article  PubMed  CAS  Google Scholar 

  37. Sharma AK, Thomas PK. Animal models: Pathology and pathophysiology. In: Diabetic neuropathy. Dyck PJ, Thomas PK, Asbury AK, et al., eds. Saunders, Philadelphia, pp 237–52, 1987.

    Google Scholar 

  38. Cornblath DR, Hillman MA, Striffler JS, et al. Peripheral neuropathy in diabetic monkeys. Diabetes 38:1365–70, 1989.

    Article  PubMed  CAS  Google Scholar 

  39. Gregersen G. Diabetic neuropathy: Influence of age, metabolic control and duration of diabetes on motor conduction velocity. Neurology 17:972–80, 1967.

    PubMed  CAS  Google Scholar 

  40. Salway JG, Finnegan JA, Barnett D, et al. Effect of myo-inositol on peripheral-nerve function in diabetes. Lancet 2:1282–84, 1978.

    Article  PubMed  CAS  Google Scholar 

  41. Palmono KP, Whiting PH, Hawthorne JN: Free and lipid myo-inositiol in tissues from rats with acute and less severe streptozotocin-induced diabetes. Biochem J 167:229–35, 1977.

    Google Scholar 

  42. Greene DA, Latimer SA: Sodium- and energy-dependent uptake of myo-inositol by rabbit peripheral nerve: Competitive inhibition by glucose and lack of an insulin effect. J Clin Invest 70:1009–18, 1982.

    Article  PubMed  CAS  Google Scholar 

  43. Mayer JH, Tomlinson DR: Prevention of defects of axonal transport and nerve conduction velocity by oral administration of myo-inositol or an aldose reductase inhibitor in streptozotocin-diabetic rats. Diabetologia 25:433–8, 1983.

    Article  PubMed  CAS  Google Scholar 

  44. Carrington AL, Calcutt NA, Ettlinger CB, et al. Effects of treatment with myoinositol or its 1,2,6-trisphosphate (PP56) on nerve conduction in streptozotocin-diabetes. Eur J Pharmacol 237:257–63, 1993.

    Article  PubMed  CAS  Google Scholar 

  45. Jefferys JGR, Palmano KP, Sharma AK, Thomas PK: Influence of dietary myoinositol on nerve conduction and inositol phospholipids in normal and diabetic rats. J Neurol Neurosurg Psychiat 41:333–9, 1978.

    Article  PubMed  CAS  Google Scholar 

  46. Thomas PK, Jefferys JGR, Sharma AK, Bajada S. Nerve conduction velocity in experimental diabetes in the rat and rabbit. J Neurol Neurosurg Psychiat 44:233–8, 1981.

    Article  PubMed  CAS  Google Scholar 

  47. Gregersen G, Børsting H, Theil P, Servo C. Myoinositol and function of peripheral nerves in human diabetics: A controlled clinical trial. Acta Neurol Scand 58:241–8, 1978.

    Article  PubMed  CAS  Google Scholar 

  48. Gregersen G, Bertelsen B, Harbo H, et al. Oral supplementation of myoinositol: Effects on peripheral nerve function in human diabetics and on the concentration in plasma, erythrocytes, urine and muscle tissue in human diabetics and normals. Acta Neurol Scand 67:164–72, 1983.

    Article  PubMed  CAS  Google Scholar 

  49. Arendrup K, Gregersen G, Hawley J, Hawthorne JN: High-dose dietary myo-inositol does not alter the ischaemia phenomenon in human diabetes. Acta Neurol Scand 80:99–102, 1989.

    Article  PubMed  CAS  Google Scholar 

  50. Kim J, Kyriazi H, Greene DA: Normalization of Na+/K+-ATPase activity in isolated membrane fraction from sciatic nerves of streptozocin-induced diabetic rats by dietary myo-inositol supplementation in vivo or protein kinase C agonists in vitro. Diabetes 40:558–67, 1991.

    Article  PubMed  CAS  Google Scholar 

  51. Xia M, Laychock SG: Insulin secretion, myo-inositol transport, and Na+/K+-ATPase in glucose-desensitized rat islets. Diabetes 42:1392–400, 1993.

    Article  PubMed  CAS  Google Scholar 

  52. Kwon HM, Yamauchi A, Uchida S, et al. Cloning of the NA for a Na+/myo-inositol cotransporter, a hypertonicity stress protein. J Biol Chem 267:6297–301, 1992.

    PubMed  CAS  Google Scholar 

  53. Simmons D, Ng LL, Bomford J: Relationship between myoinositol influx and lipids in diabetic neuropathy. Acta Diabetol 30:233–7, 1993.

    Article  PubMed  CAS  Google Scholar 

  54. Yorek MA, Dunlap JA, Stefani MR, Davidson EP. Reversal of hyperglycemic-induced defects in myo-inositol metabolism and Na+/K+ pump activity in cultured neuroblastoma cells by normalizing glucose levels. Metabolism 42:1180–89, 1993.

    Article  PubMed  CAS  Google Scholar 

  55. Yorek MA, Wiese TJ, Davidson EP, et al. Reduced motor nerve conduction velocity and Na+/K+-ATPase activity in rats maintained on L-fucose diet. Diabetes 42:1401–6, 1993.

    Article  PubMed  CAS  Google Scholar 

  56. Grafton G, Bunce CM, Sheppard MC, et al. Effect of Mg2+ on Na+-dependent inositol transport: Role for Mg2+ in etiology of diabetic complications. Diabetes 41:35–9, 1992.

    Article  PubMed  CAS  Google Scholar 

  57. Levine J, Rapaport A, Lev L, et al. Inositol treatment raises CSF inositol levels. Brain Res 627:168–70, 1993.

    Article  PubMed  CAS  Google Scholar 

  58. Cohen RA, Maregor LC, Spokes KC, et al. Effect of myo-inositol on renal Na-K-ATPase in experimental diabetes. Metabolism 39:1026–32, 1990.

    Article  PubMed  CAS  Google Scholar 

  59. Haneda M, Kikkawa R, Arimura T, et al. Glucose inhibits myo-inositol uptake and reduces myo-inositol content in cultured rat glomerular mesangial cells. Metabolism 39:40–5, 1990.

    Article  PubMed  CAS  Google Scholar 

  60. Whiteside CI, Thompson JC: Upregulation of D-myo-inositol transport in diabetic rat glomerular cells. Am J Physiol 262:E301–6, 1992.

    PubMed  CAS  Google Scholar 

  61. Guzman NJ, Crews FT: Regulation of inositol transport by glucose and protein kinase C in mesangial cells. Kidney Int 42:33–40, 1992.

    Article  PubMed  CAS  Google Scholar 

  62. Olgemöller B, Schwaabe S, Schleicher ED, Gerbitz KD: Upregulation of myo-inositol transport compensates for competitive inhibition by glucose. An explanation for the inositol paradox? Diabetes 42:1119–25, 1993.

    Article  PubMed  Google Scholar 

  63. Kasuga M, Karlsson FA, Kahn CR. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science 215:185–7, 1982.

    Article  PubMed  CAS  Google Scholar 

  64. Chou CK, Dull TJ, Rusell DS, et al. Human insulin receptors mutated at the ATP-binding site lack protein kinase activity and fail to mediate postreceptor effects of insulin. J Biol Chem 262:1842–7, 1987.

    PubMed  CAS  Google Scholar 

  65. Saltiel AR, Cuatrecasas P. Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc Natl Acad Sci USA 83:5793–7, 1986.

    Article  PubMed  CAS  Google Scholar 

  66. Larner J, Cheng K, Schwartz C, et al. A proteolytic mechanism for the action of insulin via oligopeptide mediator formation. Fed Proc 41:2724–29, 1982.

    PubMed  CAS  Google Scholar 

  67. Low MG, Saltiel AR: Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 239:268–75, 1988.

    Article  PubMed  CAS  Google Scholar 

  68. Mato JM, Kelly KL, Abler A, et al. Partial structure of an insulin-sensitive glycophospholipid. Biochem Biophys Res Commun 146:764–70, 1987.

    Article  PubMed  CAS  Google Scholar 

  69. Alemany S, Mato JM, Stralfors P: Phospho-dephospho-control by insulin is mimicked by a phospho-oligosaccharide in adipocytes. Nature 330:77–9, 1987.

    Article  PubMed  CAS  Google Scholar 

  70. Low MG, Futerman AH, Ackermann KE, et al. Removal of covalently bound inositol from Torpedo acetylcholinesterase and mammalian alkaline phosphatases by deamination with nitrous acid: Evidence for a common membrane-anchoring structure. Biochem J 241:615–19, 1987.

    PubMed  CAS  Google Scholar 

  71. Larner J, Huang LC, Schwartz CRW, et al. Rat liver insulin mediator which stimulates pyruvate dehydrogenase phosphatase contains galactosamine and d-chiroinositol. Biochem Biophys Res Commun 151:1416–26, 1988.

    Article  PubMed  CAS  Google Scholar 

  72. Larner J, Huang LC, Tang G, et al. Insulin mediators: Structure and function. Cold Spring Harb Symp Quant Biol 53:965–71, 1988.

    PubMed  CAS  Google Scholar 

  73. Saltiel AR, Osterman DG, Darnell JC, et al. The function of glycosyl phospho-inositides in hormone action. Phil Trans R Soc Lond 320:345–58, 1988.

    Article  CAS  Google Scholar 

  74. Larner J, Galasko G, Cheng K, et al. Generation by insulin of a chemical mediator that controls protein phosphorylation and dephosphorylation. Science 206:1408–10, 1979.

    Article  PubMed  CAS  Google Scholar 

  75. Jarett L, Seals JR: Pyruvate dehydrogenase activation in adipocyte mitochondria by an insulin-generated mediator from muscle. Science 206:1407–8, 1979.

    Article  PubMed  CAS  Google Scholar 

  76. Larner J, Huang LC, Suzuki S, et al. Insulin mediators and the control of pyruvate dehydrogenase complex. Ann NY Acad Sci 573:297–305, 1989.

    Article  PubMed  CAS  Google Scholar 

  77. Saltiel AR: Insulin generates an enzyme modulator from hepatic plasma membranes: Regulation of adenosine 3’,5’-monophosphate phosphodiesterase, pyruvate dehydrogenase, and adenylate cyclase. Endocrinology 120:967–72, 1987.

    Article  PubMed  CAS  Google Scholar 

  78. Huang LC, Fonteles MC, Houston DB, et al. Chiroinositol deficiency and insulin resistance. III. Acute glycogenic and hypoglycemic effects of two inositol phosphoglycan insulin mediators in normal and streptozotocin-diabetic rats in vivo. Endocrinology 132:652–7, 1993.

    Article  PubMed  CAS  Google Scholar 

  79. Farese RV, Standaert ML, Yamada K, et al. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rat. Proc Natl Acad Sci USA 91:11040–44, 1994.

    Article  PubMed  CAS  Google Scholar 

  80. Abe S, Huang LC, Larner J. Dephosphorylation of PDH by phosphoprotein phosphatases and its allosteric regulation by inositol glycans. In: Alpha-keto acid dehydrogenase complexes. In press, 1996. M.S. Patel, T.E. Roche & R.A. Harris (eds) Berhauser Verlag A.G. In press

    Google Scholar 

  81. Daughaday WH, Larner J. The renal excretion of inositol in normal and diabetic human beings. J Clin Invest 33:326–32, 1954.

    Article  PubMed  CAS  Google Scholar 

  82. Kennington AS, Hill CR, Craig J, et al. Low urinary chiro-inositol excretion in non-insulin-dependent diabetes mellitus. N Engl J Med 323:373–8, 1990.

    Article  PubMed  CAS  Google Scholar 

  83. Suzuki S, Taneda Y, Hirai S, et al. Molecular mechanism of insulin resistance in spontaneous diabetic GK (Goto-Kakizaki) rats. In: New directions in research and clinical works for obesity and diabetes mellitus. Sakamoto N, Angel A, Hotta N, eds. Elsevier, New York, pp 197–203, 1991.

    Google Scholar 

  84. Suzuki S, Kawasaki H, Satoh Y, et al. Urinary chiro-inositol excretion is an index marker of insulin sensitivity in Japanese type II diabetes. Diabetes Care 17:1465–8, 1994.

    Article  PubMed  CAS  Google Scholar 

  85. Ortmeyer HK, Bodkin NL, Lilley K, et al. Chiroinositol deficiency and insulin resistance. I. Urinary excretion rate of chiroinositol is directly associated with insulin resistance in spontaneously diabetic rhesus monkeys. Endocrinology 132:640–5, 1993.

    Article  PubMed  CAS  Google Scholar 

  86. Kofo-Abayomi A, Lucas PD: A comparison between atria from control and streptozotocin-diabetic rats: The effects of dietary myo-inositol. Br J Pharmacol 93:3–8, 1988.

    PubMed  CAS  Google Scholar 

  87. Pugliese G, Tilton RG, Speedy A, et al. Modulation of hemodynamic and vascular filtration changes in diabetic rats by dietary myo-inositol. Diabetes 39:312–22,1990.

    Article  PubMed  CAS  Google Scholar 

  88. Gousse A, Yoshida M, Weiss RM, Latifpour J. Beta adrenergic receptor alterations in diabetic rat prostate: Effects of insulin and dietary myoinositol. Prostate 19:121–31, 1991.

    Article  PubMed  CAS  Google Scholar 

  89. Latifpour J, Gousse A, Yoshida M, Weiss RM. Effect of insulin and dietary myoinositol on muscarinic receptor alterations in diabetic rat bladder. J Urol 147:760–3, 1992.

    PubMed  CAS  Google Scholar 

  90. Tilton RG, Faller AM, Lose LS, et al. Dietary myo-inositol supplementation does not prevent retinal and glomerular vascular structural changes in chronically diabetic rats. J Diabetes Complications 7:188–98, 1993.

    Article  PubMed  CAS  Google Scholar 

  91. Narayanan CR, Joshi DD, Mujumdar AM, Dhekne VV: Pinitol—a new antidiabetic compound from the leaves of Bougainvillea spectabilis. Curr Sci (Bangalore, India) 56:139–41, 1987.

    CAS  Google Scholar 

  92. Ortmeyer HK, Huang LC, Zhang L, et al. Chiroinositol deficiency and insulin resistance. II. Acute effects of D-chiroinositol administration in streptozotocin-diabetic rats, normal rats given a glucose load, and spontaneously insulin-resistant rhesus monkeys. Endocrinology 132:646–51, 1993.

    Article  PubMed  CAS  Google Scholar 

  93. Ortmeyer HK, Bodkin NL, Hansen BC, Lamer J: In vivo D-chiroinositol activates skeletal muscle glycogen synthase and inactivates glycogen phosphorylase in rhesus monkeys. J Nutr Biochem 6:499–503, 1995.

    Article  CAS  Google Scholar 

  94. Ortmeyer HK, Larner J, Hansen BC. Effects of D-chiroinositol added to a meal on plasma glucose and insulin in hyperinsulinemic rhesus monkeys. Obesity Res, 3:605S-608S, 1995.

    CAS  Google Scholar 

  95. Ortmeyer HK, Hansen BC. Myoinositol added to the diet results in lower urine glucose and in lower postprandial plasma glucose in obese rhesus monkeys. Diabetes Care 18:A12, 1995.

    Google Scholar 

  96. Pak YB, Huang LC, Lilley K, Lamer J. In vivo conversion of [3H]myoinositol to [3H] chiroinositol in rat tissues. J Biol Chem 267:16904–910, 1992.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Hansen, B.C., Ortmeyer, H.K. (1996). Inositols—Potential roles in insulin action and in diabetes: Evidence from insulin-resistant nonhuman primates. In: Shafrir, E. (eds) Lessons from Animal Diabetes VI. Rev.Ser.Advs.Research Diab.Animals (Birkhäuser), vol 6. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4112-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4112-6_19

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8658-5

  • Online ISBN: 978-1-4612-4112-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics