Advertisement

Transgenic hyperinsulinemia: A mouse model of insulin resistance and glucose intolerance without obesity

  • S. Lee Marbán
  • Jesse Roth
Part of the Rev.Ser.Advs.Research Diab.Animals (Birkhäuser) book series (RSARDA, volume 6)

Abstract

Type II diabetes represents the most common form of diabetes in humans and is a major cause of morbidity and mortality.1In any individual patient, the primary metabolic abnormality initiating this disease process remains elusive, in spite of extensive study of the human condition and multiple animal models.2–5 Most of these models share several features with human type II diabetes, including glucose intolerance associated with hyperinsulinemia, insulin resistance, and obesity. We describe here transgenic mice that represent a novel model of early type II diabetes. They share many physiologic characteristics with other rodent models of type II diabetes, but they are not obese. They are not the result of a poorly defined mutation that may cause extensive abnormalities beyond those seen in glucose homeostasis, and they are not the result of surgical or pharmacologic manipulation. The metabolic abnormalities seen in these transgenics result from the introduction of multiple copies of the normal human insulin gene into their genome.

key words

transgenic hyperinsulinemia insulin resistance type II diabetes mellitus human insulin gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shafrir E, Bergman M, Felig P. The endocrine pancreas: Diabetes mellitus. In: Endocrinology and metabolism. Felig P, Baxter JD, Broadus AE, Frohman LA, eds. McGraw-Hill, New York, 1987, pp 1043–1178.Google Scholar
  2. 2.
    Herberg L, Coleman DL. Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99, 1977.PubMedCrossRefGoogle Scholar
  3. 3.
    Mordes JP, Rossini AA. Animal models of diabetes. In: Joslin’s diabetes mellitus. Marble A, Krall LP, Bradley RF, Christlieb AR, Soeldner JS, eds. Lea & Febiger, Philadelphia, 1985. pp. 110–137.Google Scholar
  4. 4.
    Coleman DL. Obesity and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14:141–8, 1978.PubMedCrossRefGoogle Scholar
  5. 5.
    Coleman DL. Diabetes-obesity syndromes in mice. Diabetes 31:1–6, 1982.PubMedCrossRefGoogle Scholar
  6. 6.
    Marbán SL, DeLoia JA, Gearhart JD: Hyperinsulinemia in transgenic mice carrying multiple copies of the human insulin gene. Dev Genet 10:356–64, 1989.PubMedCrossRefGoogle Scholar
  7. 7.
    Walker MD, Edlund T, Boulet AM, Rutter WJ: Cell-specific expression controlled by the 5’ flanking region of insulin and chymotrypsin genes. Nature 306:557–61, 1983.PubMedCrossRefGoogle Scholar
  8. 8.
    Hanahan D. Heritable formation of pancreaticβ-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315:115–22, 1985.PubMedCrossRefGoogle Scholar
  9. 9.
    Karlsson O, Edlund T, Moss JB, et al. A mutational analysis of the insulin gene transcriptional control region: Expression in beta cells is dependent on two related sequences within the enhancer. Proc Natl Acad Sci USA 84:8819–23, 1987.PubMedCrossRefGoogle Scholar
  10. 10.
    Crowe DT, Tsai MJ: Mutagenesis of the rat insulin II 5’-flanking region defines sequences important for expression in HIT cells. Mol Cell Biol 9:1784–89, 1989.PubMedGoogle Scholar
  11. 11.
    Fromont-Racine M, Bucchini D, Madsen O, et al. Effect of 5’-flanking sequence deletions on expression of the human insulin gene in transgenic mice. Mol Endocrinol 4:669–77, 1990.PubMedCrossRefGoogle Scholar
  12. 12.
    Johnson RN, Metcalf PA, Baker JR: Fructosamine: A new approach to the estimation of serum glycosylated protein. Clin Chim Acta 127:87–95, 1982.CrossRefGoogle Scholar
  13. 13.
    Glinkmanas G, Sarmini H, Bigorie B, et al. Evaluation of Roche fructosamine test: Use for diabetic patient monitoring. Clin Biochem 21:319–21, 1988.CrossRefGoogle Scholar
  14. 14.
    Larkins RG: Defective insulin secretory response to glucose in the New Zealand obese mouse. Diabetes 22:251–5, 1973.PubMedGoogle Scholar
  15. 15.
    Green AA, Hughes WL. Protein fractionation on the basis of solubility in aqueous solutions of salts and organic solvents. Methods Enzymol 1:67–90, 1955.CrossRefGoogle Scholar
  16. 16.
    Heding LG. Radioimmunological determination of human C-peptide in serum. Diabetologia 11:541–8, 1975.PubMedCrossRefGoogle Scholar
  17. 17.
    Kimmel JR, Hay den LJ, Pollock HC: Isolation and characterization of a new pancreatic polypeptide hormone. J Biol Chem 250:9369–76, 1975.PubMedGoogle Scholar
  18. 18.
    Shuldiner AR, Bennet C, Robinson EA, Roth J: Isolation and characterization of two different insulins from an amphibianXenopus laevis.Endocrinology 125:469–77, 1989.PubMedCrossRefGoogle Scholar
  19. 19.
    Raben N, Barbetti F, Cama A, et al. Normal coding sequence of insulin gene in Pima Indians and Nauruans, two groups with highest prevelance of type II diabetes. Diabetes 40:118–22, 1991.PubMedCrossRefGoogle Scholar
  20. 20.
    Shemer J, Penhos JC, Loith D: Insulin receptors in lizard brain and liver: Structural and functional studies of α andβsubunits demonstrate evolutionary conservation. Diabetologia 29:321–9, 1986.PubMedCrossRefGoogle Scholar
  21. 21.
    Shemer J, Ota A, Adamo M, LeRoith D: Insulin-sensitive tyrosine kinase is increased in livers of adult obese Zucker rats: Correlation with prolonged fasting. Endocrinology 123:140–8, 1988.PubMedCrossRefGoogle Scholar
  22. 22.
    Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827–9, 1978.PubMedCrossRefGoogle Scholar
  23. 23.
    Dayhoff MO. Insulin amino acid sequences. Atlas Prot Sequence Structure 5:127–30, 1976.Google Scholar
  24. 24.
    Dayhoff MO. C-peptide amino acid sequences. Atlas Prot Sequence Structure 5:150–1, 1978.Google Scholar
  25. 25.
    Cefalu WT, Parker TB, Johnson CR: Validity of serum fructosamine as index of short-term glycemic control in diabetic outpatients. Diabetes Care 11:662–4, 1988.PubMedGoogle Scholar
  26. 26.
    Baker JR, O’Connor JP, Metcalf PA, et al. Clinical usefulness of estimation of serum fructosamine concentration as a screening test for diabetes mellitus. Br Med J 287:863–7, 1983.CrossRefGoogle Scholar
  27. 27.
    Baker JR, Metcalf PA, Johnson RN, et al. Use of protein-based standards in automated colorimetric determinations of fructosamine in serum. Clin Chem 31:1550–54, 1985.PubMedGoogle Scholar
  28. 28.
    Adams TE, Alpert S, Hanahan D: Non-tolerance and autoantibodies to a transgenic self-antigen expressed in pancreatic cells. Nature 325:223–8, 1987.PubMedCrossRefGoogle Scholar
  29. 29.
    Robbins DC, Shoelson SE, Rubenstein AH, Tager HS. Familial hyperinsulinemia. J Clin Invest 73:714–19, 1984.PubMedCrossRefGoogle Scholar
  30. 30.
    Shoelson S, Haneda M, Blix P, et al. Three mutant insulins in man. Nature 302:540–3, 1983.PubMedCrossRefGoogle Scholar
  31. 31.
    Kahn CR, Neville DM, Roth J: Insulin-receptor interaction in the obese hyperinsu- linemic mouse. J Biol Chem 248:244–50, 1973.PubMedGoogle Scholar
  32. 32.
    Saffer JD: Transgenic mice in biomedical research. Lab Anim: 30–8, 1992.Google Scholar
  33. 33.
    Merlino GT: Transgenic animals in biomedical research. FASEB J 5:2996–3001, 1991.PubMedGoogle Scholar
  34. 34.
    Munir MI, Rossiter BJF, Caskey CT: Antisense RNA production in transgenic mice. Somat Cell Mol Genet 16:383–94, 1990.PubMedCrossRefGoogle Scholar
  35. 35.
    Capecchi MR: Altering the genome by homologous recombination. Science 244:1288–92, 1989.PubMedCrossRefGoogle Scholar
  36. 36.
    Barinaga M: Knockout mice: Round two. Science 265:26–8, 1994.PubMedCrossRefGoogle Scholar
  37. 37.
    Lipes MA, Eisenbarth GS: Transgenic mouse models of type I diabetes. Diabetes 39:879–84, 1990.PubMedCrossRefGoogle Scholar
  38. 38.
    Harrison LC. Transgenic approaches to understanding the role of MHC genes in insulin-dependent diabetes mellitus. Clin Endocrinol Metab 5:439–47, 1991.Google Scholar
  39. 39.
    Moller DE: Transgenic approaches to the pathogenesis of NIDDM. Diabetes 3:1394–1401, 1994.CrossRefGoogle Scholar
  40. 40.
    Carrol RJ, Hammer RE, Chan SJ, et al. A mutant human proinsulin is secreted from islets of Langerhans in increased amount via an unregulated pathway. Proc Natl Acad Sci USA 85:8943–47, 1988.CrossRefGoogle Scholar
  41. 41.
    Welsh M, Hammer RE, Brinster RL, et al. Stimulation of growth hormone synthesis by glucose in islets of Langerhans isolated from transgenic mice. J Biol Chem 261:12915–917, 1986.PubMedGoogle Scholar
  42. 42.
    Epstein PN, Boschero AC, Atwater I, et al. Expression of yeast hexokinase in pancreatic beta cells of transgenic mice reduces blood glucose, enhances insulin secretion, and decreases diabetes. Proc Natl Acad Sci USA 89:12038–42, 1992.PubMedCrossRefGoogle Scholar
  43. 43.
    Voss-McCowan ME, Xu B, Epstein PN: Insulin synthesis, secretory competence and glucose utilization are sensitized by transgenic yeast hexokinase. J Biol Chem 269:15814–818, 1994.PubMedGoogle Scholar
  44. 44.
    Efrat S, Leiser M, Wu Y-J, et al. Ribozyme-mediated attenuation of pancreatic B- cell glucokinase expression in transgenic mice results in impaired glucose-induced insulin secretion. Proc Natl Acad Sci USA 91:2051–5, 1994.PubMedCrossRefGoogle Scholar
  45. 45.
    Benecke H, Flier JS, Rosenthal N, et al. Muscle-specific expression of human insulin receptor in transgenic mice. Diabetes 42:206–12, 1993.PubMedCrossRefGoogle Scholar
  46. 46.
    Chang P-Y, Benecke H, Le Marchand-Brustel Y, et al. Expression of a dominant- negative mutant human insulin receptor in the muscle of transgenic mice. J Biol Chem 269:16034–40, 1994.PubMedGoogle Scholar
  47. 47.
    Schaefer EM, Viard V, Morin J, et al. A new transgenic mouse model of chronic hyperglycemia. Diabetes 43:143–53, 1994.PubMedCrossRefGoogle Scholar
  48. 48.
    Hoppener JWM, Oosterwijk C, Verbeek SJ, et al. IAPP/amylin transgenic mice as an in vivo model system for type 2 diabetes mellitus? Biochem Soc Trans 21:285,1992Google Scholar
  49. 49.
    Fox N, Schrement J, Nishi M, et al. Human islet amyloid polypeptide transgenic mice as a model of non-insulin-dependent diabetes mellitus FEBS Lett 323:40–4,1993Google Scholar
  50. 50.
    D’Alessio DA, Verchere CB, Kahn SE, et al. Pancreatic expression and secretion of human islet amyloid polypeptide in a transgenic mouse. Diabetes 43:1457–61,1994.PubMedCrossRefGoogle Scholar
  51. 51.
    Unger RH: Diabetic hyperglycemia: Link to impaired glucose transport in pancreatic beta cells. Science 251:1200–5, 1991.PubMedCrossRefGoogle Scholar
  52. 52.
    Tal M, Wu Y-J, Lweiser M, et al. [Val 12]Hras downregulates GLUT2 in beta cells of transgenic mice without affecting glucose homeostasis. Proc Natl Acad Sci USA 89:5744–8, 1992.PubMedCrossRefGoogle Scholar
  53. 53.
    Patel YM, Yun JS, Liu J, et al. An analysis of regulatory elements in the phospho- enolpyruvate carboxykinase (GTP) gene which are responsible for its tissue-specific expression and metabolic control in transgenic mice. J Biol Chem 269:5619–28,1994PubMedGoogle Scholar
  54. 54.
    Valera A, Pujol A, Pelegrin M, Bosch F. Transgenic mice overexpressing phos- phoenolpyruvate carboxykinase develop noninsulin-dependent diabetes mellitus. Proc Nat Acad Sci USA 91:9151–4, 1994.PubMedCrossRefGoogle Scholar
  55. 55.
    Bucchini D, Ripoche MA, Stinnakre M-G, et al. Pancreatic expression of human insulin gene in transgenic mice. Proc Natl Acad Sci USA 83:2511–15, 1986.PubMedCrossRefGoogle Scholar
  56. 56.
    Selden RF, Skoskiewicz MJ, Howie KB, et al. Regulation of human insulin gene expression in transgenic mice. Nature 321:525–8, 1986.PubMedCrossRefGoogle Scholar
  57. 57.
    Schnetzler B, Murakawa G, Abalos D, et al. Adaptation to supraphysiologic levels of insulin gene expression in transgenic mice: Evidence for the importance of post- transcriptional regulation. J Clin Invest 92:272–86, 1993.PubMedCrossRefGoogle Scholar
  58. 58.
    Brinster RL, Chan HJ, Trumbauer ME, et al. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci USA 82:4438–42, 1985.PubMedCrossRefGoogle Scholar
  59. 59.
    Bonnerot C, Grimber G, Briand P, et al. Patterns of expression of position-dependent integrated transgenes in mouse embryo. Proc Natl Acad Sci USA 87:6331–35, 1990.PubMedCrossRefGoogle Scholar
  60. 60.
    Reaven GM. Role of insulin resistance in human disease. Diabetes 37:1595–607, 1988.PubMedCrossRefGoogle Scholar
  61. 61.
    DeFronzo RA: Pathogenesis of type II (non-insulin-dependent) diabetes mellitus: A balanced overview. Diabetologia 35:389–97, 1992.PubMedCrossRefGoogle Scholar
  62. 62.
    Taylor SI, Accili D, Imai Y: Insulin resistance or insulin deficiency: which is the primary cause of NIDDM? Diabetes 43:735–40, 1994.PubMedGoogle Scholar
  63. 63.
    Bogardus C: Insulin resistance in the pathogenesis of NIDDM in Pima Indians. Diabetes Care 16:228–31, 1993.PubMedCrossRefGoogle Scholar
  64. 64.
    Lillioja S, Mott DM, Spraul M, et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus: Prospective studies of Pima Indians. N Engl J Med 329:1988–92, 1993.PubMedCrossRefGoogle Scholar
  65. 65.
    Haffner SM, Stern MP, Hazuda HP, et al. Hyperinsulinemia in a population at high risk for non-insulin-dependent diabetes mellitus. N Engl J Med 315:220–4, 1986.PubMedCrossRefGoogle Scholar
  66. 66.
    Johnston C, Ward WK, Beard JC, et al. Islet function and insulin sensitivity in the non-diabetic offspring of conjugal type 2 diabetic patients. Diabet Med 7:119–25, 1990.PubMedCrossRefGoogle Scholar
  67. 67.
    Warram JH, Martin BC, Krolewski AS, et al. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med 113:909–15, 1990.PubMedGoogle Scholar
  68. 68.
    Martin BC, Warren JH, Krolewski AS, et al. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: Results of a 25-year follow-up study. Lancet 340:925–9, 1992.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1996

Authors and Affiliations

  • S. Lee Marbán
    • 1
    • 3
  • Jesse Roth
    • 2
  1. 1.Division of Neonatology, Department of PediatricsSinai Hospital of BaltimoreUSA
  2. 2.Division of Geriatric Medicine and Gerontology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of PediatricsSinai Hospital of BaltimoreBaltimoreUSA

Personalised recommendations