From the first simple experiments to sophisticated applications of laser microtools

  • Karl Otto Greulich
Part of the Methods in Bioengineering book series (MB)


We are there! We now have a complete set of laser microtools: a laser microbeam and optical tweezers. The microbeams can be used to ablate, drill holes, weld, fuse or to cut. The optical tweezers can be used to manipulate and hold objects. In combination, they allow complete micromanipulation by light. We can now start our journey through the world of applications and use the laser microtools in experiments on biology and biomedicine. On our way we will meet with quite complex applications. But let us start with some simple experiments.


Tobacco Mosaic Virus Optical Tweezer Gall Midge Subcellular Structure Optical Trapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Selected literature

  1. L. Avery (1993) Motor neuron M3 controls pharyngeal muscle relaxation timing in C. elegans. J. Exp. Biol. 175, 283–297.PubMedGoogle Scholar
  2. C. van den Berg, V. Willemsen, W. Hage, P. Weisbeek and B. Scheres (1995) Cell fate inArabidopsis root meristem determined by directional signaling. Nature 378.6552. 16 and 62.CrossRefGoogle Scholar
  3. C. I. Bergmann and H.R. Horwitz (1991) Chemosensory neurons with overlapping functions direct Chemotaxis to multiple chemicals inC. elegans. Neuron 7, 729–742.CrossRefGoogle Scholar
  4. J. Bereiter Hahn (1972) Laser als Mikromanipulator in Biologie und Medizin. Microsc. Acta 71 and 72, 225–241 and 72, 1–33.Google Scholar
  5. M.W.Berns and C. Salet (1972) Laser microbeams for partial cell irradiation. Int.Rev. Cytol 33, 131–154.PubMedCrossRefGoogle Scholar
  6. M.W. Berns (1974) “Biological microirradiation” Prentice Hall Series on Biological Techniques, Englewood Cliffs, New Jersey.Google Scholar
  7. M.W. Berns, J. Aist, J. Edwards, K. Strahs, J. Girton, P Meill, J.B. Rattner, M. Kitzes, M. Hammer-Wilson, L.H. Liaw, A. Siemens, M. Koonce, S. Peterson, S. Brenner, J. Burt, R. Walter, P.J. Bryant, D van Dyk, J. Coulombe, T. Cahill and G.S. Berns (1981) Laser microsurgery in cell and developmental biology. Science 213, 505–513.PubMedCrossRefGoogle Scholar
  8. M.W. Berns, W.H. Wright and R. Wiegand Steubing (1991) Laser microbeam as a tool in cell biology. Int. Rev. Cytol. 129, 1–44.PubMedCrossRefGoogle Scholar
  9. D. H. Hall and R.L. Russel (1991) The posterior nervous system of the nematode Caenorhabditis elegans: Serial reconstruction of identified neurons and complete pattern of synaptic interactions. J. Neurosci. 11,1–22.PubMedGoogle Scholar
  10. M.S. Halfon, H. Kose, A. Chiba and H. Keshishan (1997) Targeted gene expression without a tissue specific promoter: Creating embryos using laser induced single cell heat shock. Proc. Natl. Acad. Sci. 94, 6255–6260.PubMedCrossRefGoogle Scholar
  11. A.B. Illagan and A. Forer (1997) Effects of UV microbeam irradiation of kineto- chores in crane fly spermatocytes. Cell Motility 36.3, 266–275.CrossRefGoogle Scholar
  12. M.Lohs-Schardin, C. Cremer and C. Nüsslein-Volhard (1979) A fate map for the larval epidermis of drosophila melanogaster: Localized cuticle effects following irradiation of the blastoderm with an ultraviolet laser microbeam. Dev. Biol. 73, 239–255.PubMedCrossRefGoogle Scholar
  13. E. Schierenberg (1984) Altered cell division rates after laser induced cell fusion in nematode embryos. Dev. Biol. 101, 240–245.PubMedCrossRefGoogle Scholar
  14. S. Tschachotin (1912) Die mikroskopische Srahlenstichmethode, eine Zellopera- tionsmethode. Biol. Zentralbl. 32, 623–630.Google Scholar

Selected literature (for reviews see also literature given in Section 3.1)

  1. M.W. Berns, R.S. Olson and D.E. Round (1969) Argon ion laser microirradiation of nucleoli. J. Cell. Biol. 43,1821–1840.CrossRefGoogle Scholar
  2. T. Cremer, C. Cremer, H. Baumann, E-K. Luedtke, K. Sperling, V. Teuber and C. Zorn (1982) Rabl’s model of the interphase chromosome arrangement tested in Chinese hamster cells by premature chromosome condensation and laser UV microbeam experiments. Hum. Genet. 60,46–56.PubMedCrossRefGoogle Scholar
  3. O. Egner and J. Bereiter-Hahn (1970) Laser-Strahlenstichversuche an Fisch Melanophoren. Z. f. wissensch. Mikroskopie und mik. Technik 70, 17–22.Google Scholar
  4. G. Hahne and F. Hofmann (1984) The effect of laser microsurgery on cytoplasmic strands and cytoplasmic streaming in isolated plant protoplasts. Eur. J. Cell bi- ol. 33, 175–179.Google Scholar
  5. Y. Hu, H. Liang and Y. Jiang (1989) Study on mechanism of micronucleoli formation by laser microirradiation. Cell Biophysics 14, 257–263.PubMedGoogle Scholar
  6. M. Kitzes, G. Twiggs and M.W. Berns (1977) Alteration of membrane electrical activity in rat myocardial cells following laser microbeam irradiation. J. Cell. Phsiol. 93, 99–104.CrossRefGoogle Scholar
  7. G. Leitz, K.O. Greulich and E. Schnepf (1994) Laser microsurgery and optical trapping in the marine dinophyte Pyrocystis noctiluca. Botan. Acta. 107, 90–94.Google Scholar
  8. C. Rabl (1885) Über Zellteilung/On cell division, (in German) Morphologisches Jahrbuch Gegenbaur C, 10, 214–330.Google Scholar
  9. V.I. Rodionov, A.G. Vardayan, V.F. Kamalow and V.I. Gelfand (1987) The movement of melanosomes in melanophore fragments obtained by laser microbeam irradiation. Cell Biol. Int. Rep. 11, 565–571.Google Scholar
  10. D. E. Rounds, R. Olson and F.J ohnson (1968) The effect of the laser on cell respiration. Z. Zellforschung 87, 193–198.CrossRefGoogle Scholar
  11. C. Salet (1972) A study of beating frequency of a single myocardial cell. I: Q switched laser microirradiation of mitochondria. Exp. Cell. Res. 73, 360–366.PubMedCrossRefGoogle Scholar
  12. C. Salet, M. Lutz and F.S. Barnes (1970) Paramétrés physiques characterisant le dommage thermique selectiv de mitochondires en microirradiation par laser. Photochem. Photobiol. 11, 193–205.PubMedCrossRefGoogle Scholar

Selected literature

  1. A. Ashkin and J.M. Dziedzic (1987) Optical trapping and manipulation of viruses and bacteria. Science 1517–1520.Google Scholar
  2. A. Ashkin, J.M. Dziedzic and T. Yamane (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 320, 769–771.CrossRefGoogle Scholar
  3. A. Ashkin and J.M. Dziedzic (1989) Internal cell manipulation using infrared laser traps. Proc. Natl. Acad. Sci. 7914–7918.Google Scholar
  4. K.J. Aufderheide, Q. Du and E.R. Fry (1992) Directed positioning of nuclei in living Paramecium tetraurelia: Use of the laser optical force trap for developmental biology. Dev. Gen. 13, 235–240.CrossRefGoogle Scholar
  5. S.M. Block, D.F. Blair and H.C. Berg (1989) Compliance of bacterial flagella measured with optical tweezers. Nature 338, 514–18.PubMedCrossRefGoogle Scholar
  6. S.M. Block, D.F. Blair and H.C. Berg (1991) Compliance of bacterial polyhooks measured with optical tweezers. Cytometry 12, 492–96.PubMedCrossRefGoogle Scholar
  7. T.N. Buican, M.J. Smith, H.A. Crissmann, G.C. Salzmann, C.C. Stewart and J.C. Martin (1987) Automated single cell manipulation and sorting by light trapping. Appl. Opt. 26, 5311–5316.PubMedCrossRefGoogle Scholar
  8. J. Dai and M.P. Sheetz (1995) Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Bioph. J. 68. 988–993.CrossRefGoogle Scholar
  9. K.O Greulich, U. Bauder, S. Monajembashi, N. Ponelies, S. Seeger and J. Wolfrum (1989) UV laser microbeam and optical tweezers (in German) Labor 2000, 36.Google Scholar
  10. S. Seeger, S. Monajembashi, K.-J. Hutter, G. Futtermann, J. Wolfrum and K.O. Greulich (1991) Application of laser optical tweezers in immunology and molecular genetics. Cytometry 12, 497–504.PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1999

Authors and Affiliations

  • Karl Otto Greulich
    • 1
  1. 1.Institut für Molekulare Biotechnologie e.V.JenaGermany

Personalised recommendations