Gravity II — Field Equations

  • Chris Doran
  • Anthony Lasenby
  • Stephen Gull
Conference paper

Abstract

In Lecture I we introduced the \({\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{h} }\) and Ω(a) gauge fields. Their transformation properties are summarised in Table 13.1. Prom these, we need to construct ‘covariant’ quantities which transform in the same way that physical fields do. We start by defining the field strength R(ab) by
$$\frac{1} {2}R(a \wedge b)\psi \equiv \left[ {D_a ,D_b } \right]\psi ,$$
(13.1)
$$ \Rightarrow R(a \wedge b) = a \cdot \nabla \Omega (b) = b \cdot \nabla \Omega (b) + \Omega (a) \times \Omega (b.)$$
(13.2)
R(ab) is a bivector-valued linear function of its bivector argument ab. This extends by linearity to the function R(B), where B is an arbitrary bivector. Where necessary, the position dependence of R(B) is made explicit by writing R(B,x) or R x (B).

Keywords

Summing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Boston 1996

Authors and Affiliations

  • Chris Doran
    • 1
  • Anthony Lasenby
    • 1
  • Stephen Gull
    • 1
  1. 1.Cavendish LaboratoryMRAOCambridgeUK

Personalised recommendations