Skip to main content

The Martingale Method for Mean-Field Disordered Systems at High Temperature

  • Chapter
Mathematical Aspects of Spin Glasses and Neural Networks

Part of the book series: Progress in Probability ((PRPR,volume 41))

Abstract

We review some martingale techniques for the study of meanfield disordered systems at high temperature, including the Sherrington-Kirkpatrick model, the Hopfield model, and more general associative memory models. We describe the log-normal limit of the partition function in term of a Brownian motion, and we give another proof of self-averaging for pressure. In the Sherrington-Kirkpatrick case we show that the law of the product of two independent configurations is close to uniform at very high temperature, but this does not persist in the whole high-temperature region.

Article

Work partially supported by the Commission of the European Union under contract CHRX-CT93-0411

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aizenman, J. Lebowitz and D. Ruelle, Some rigourous results on the Sherrington-Kirkpatrick model, Commun. Math. Phys. 112, 3–20 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Bovier, contribution to this workshop.

    Google Scholar 

  3. A. Bovier, V. Gayrard and P. Picco, Gibbs states of the Hopfield model with extensively many patterns, J. Stat. Phys. 79, 395–414 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  4. O. Catoni, The Legendre transform of two replicas of the S.-K. spin-glass model, Prob. Theo. Rel. Fields 105, 369–392 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Chiueh and R. Goodman, Recurrent correlation associative memories, IEEE Neur. Net. 2, 275–284 (1991).

    Article  Google Scholar 

  6. F. Comets, A spherical bound for the Sherrington-Kirkpatrick model, Asterisque 236, 103–108 (1996).

    MathSciNet  Google Scholar 

  7. F. Comets and J. Neveu, The Sherrington-Kirkpatrick model of spin-glasses and stochastic calculus: the high temperature case, Commun. Math. Phys. 166, 549–564 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Comets and J. Neveu, in progress.

    Google Scholar 

  9. A. Dembo and O. Zeitouni, General potential surfaces and neural networks, Phys. Rev. A 37, 2134–2143 (1988).

    MathSciNet  Google Scholar 

  10. A. Dembo and O. Zeitouni, Large deviation techniques and applications. Jones and Bartlett, Boston, 1993.

    Google Scholar 

  11. K. Fischer and J. Hertz, Spin glasses. Cambridge University Press, New York, 1991.

    Book  Google Scholar 

  12. J. Fröhlich and B. Zegarlinski, Spin glasses and other lattice systems with long range interactions, Commun. Math. Phys. 120, 665–688 (1989).

    Article  MATH  Google Scholar 

  13. J. Hopfield, Neural network and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982).

    Article  MathSciNet  Google Scholar 

  14. A. Ibragimov, V. Sudakov, and B. Tsirelson, Norms of gaussian sample functions, Proc. 3rd Japan USSR Symp. on Probab. Theor., Lecture Notes Mathematics 550, pp. 20–41 (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  15. K. Khanin and Y. Sinai, Existence of free energy for models with long range random Hamiltonian, J. Stat. Phys. 20, 573–584 (1979).

    Google Scholar 

  16. D. Loukianova, Lower bounds on the restitution error in the Hopfield Model, Probab. Theor. Rel. Fields 107, 161–176 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. McEliece, E. Posner, E. Rodemich, and S. Vankatesh, The capacity of the Hopfield associative memory, IEEE trans. Inform. Theor. 33, 461–482 (1987).

    Article  MATH  Google Scholar 

  18. M. Mezard, G. Parisi, and M.-A. Virasoro, Spin-glass theory and beyond, World Scientific, Singapore, 1987.

    MATH  Google Scholar 

  19. C. Newman, Memory capacity and neural networks models: rigourous lower bounds, Neural Networks 1, 223–238 (1988).

    Article  Google Scholar 

  20. D. Petritis, Equilibrium statistical mechanics of frustrated spin glasses: a survey of mathematical results, Ann. Inst. H. Poincaré (series Phys. Theor.) 64 255–288 (1996).

    MathSciNet  MATH  Google Scholar 

  21. L. Pastur and M. Shcherbina, Absence of self-averaging of the order parameter in the Sherrington-Kirkpatrick model, J. Stat. Phys. 6, 1–19 (1991).

    Article  MathSciNet  Google Scholar 

  22. E. Scacciatelli and B. Tirozzi, Fluctuation of the free energy in the Hopfield model, J. Stat. Phys. 67, 981–1008 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Sherrington and S. Kirkpatrick, Solvable model of a spin glass, Phys. Rev. Lett. 35, 1792–1796 (1975).

    Article  Google Scholar 

  24. M. Talagrand, The Sherrington-Kirkpatrick model. A challenge for mathematicians, Preprint, 1996.

    Google Scholar 

  25. M. Talagrand, Rigourous results for the Hopfield model with many patterns, Preprint, 1996; “Résultats rigoureux pour le modèle de Hopfield.” C. R. Acad. Sci. Paris 321 109–112 (1995).

    MathSciNet  MATH  Google Scholar 

  26. A. Toubol, About the original Sherrington-Kirkpatrick model of spin glasses, C. R. Acad. Sci. Paris 321 Serie I 617–622 (1995).

    MathSciNet  MATH  Google Scholar 

  27. A. Toubol, High temperature regime for a multidimensional Sherrington-Kirkpatrick model of spin glass, to appear in Probab. Theor. Rei Fields.

    Google Scholar 

  28. B. Zegarlinski, Interactions and pressure functionals for disordered lattice systems, Commun. Math. Phys. 139 305–339 (1991).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Birkhäuser Boston

About this chapter

Cite this chapter

Comets, F. (1998). The Martingale Method for Mean-Field Disordered Systems at High Temperature. In: Bovier, A., Picco, P. (eds) Mathematical Aspects of Spin Glasses and Neural Networks. Progress in Probability, vol 41. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4102-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4102-7_2

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8653-0

  • Online ISBN: 978-1-4612-4102-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics