The Martingale Method for Mean-Field Disordered Systems at High Temperature

  • Francis Comets
Part of the Progress in Probability book series (PRPR, volume 41)


We review some martingale techniques for the study of meanfield disordered systems at high temperature, including the Sherrington-Kirkpatrick model, the Hopfield model, and more general associative memory models. We describe the log-normal limit of the partition function in term of a Brownian motion, and we give another proof of self-averaging for pressure. In the Sherrington-Kirkpatrick case we show that the law of the product of two independent configurations is close to uniform at very high temperature, but this does not persist in the whole high-temperature region.


Partition Function Brownian Motion Configuration Space Spin Glass Gibbs Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ALR]
    M. Aizenman, J. Lebowitz and D. Ruelle, Some rigourous results on the Sherrington-Kirkpatrick model, Commun. Math. Phys. 112, 3–20 (1987).MathSciNetMATHCrossRefGoogle Scholar
  2. [B]
    A. Bovier, contribution to this workshop.Google Scholar
  3. [BGP]
    A. Bovier, V. Gayrard and P. Picco, Gibbs states of the Hopfield model with extensively many patterns, J. Stat. Phys. 79, 395–414 (1995).MathSciNetMATHCrossRefGoogle Scholar
  4. [Ca]
    O. Catoni, The Legendre transform of two replicas of the S.-K. spin-glass model, Prob. Theo. Rel. Fields 105, 369–392 (1996).MathSciNetMATHCrossRefGoogle Scholar
  5. [CG]
    T. Chiueh and R. Goodman, Recurrent correlation associative memories, IEEE Neur. Net. 2, 275–284 (1991).CrossRefGoogle Scholar
  6. [C]
    F. Comets, A spherical bound for the Sherrington-Kirkpatrick model, Asterisque 236, 103–108 (1996).MathSciNetGoogle Scholar
  7. [CN]
    F. Comets and J. Neveu, The Sherrington-Kirkpatrick model of spin-glasses and stochastic calculus: the high temperature case, Commun. Math. Phys. 166, 549–564 (1995).MathSciNetMATHCrossRefGoogle Scholar
  8. [CN2]
    F. Comets and J. Neveu, in progress.Google Scholar
  9. [DZ]
    A. Dembo and O. Zeitouni, General potential surfaces and neural networks, Phys. Rev. A 37, 2134–2143 (1988).MathSciNetGoogle Scholar
  10. [DZ1]
    A. Dembo and O. Zeitouni, Large deviation techniques and applications. Jones and Bartlett, Boston, 1993.Google Scholar
  11. [FH]
    K. Fischer and J. Hertz, Spin glasses. Cambridge University Press, New York, 1991.CrossRefGoogle Scholar
  12. [FZ]
    J. Fröhlich and B. Zegarlinski, Spin glasses and other lattice systems with long range interactions, Commun. Math. Phys. 120, 665–688 (1989).MATHCrossRefGoogle Scholar
  13. [H]
    J. Hopfield, Neural network and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982).MathSciNetCrossRefGoogle Scholar
  14. [IST]
    A. Ibragimov, V. Sudakov, and B. Tsirelson, Norms of gaussian sample functions, Proc. 3rd Japan USSR Symp. on Probab. Theor., Lecture Notes Mathematics 550, pp. 20–41 (Springer-Verlag, Berlin, 1976).Google Scholar
  15. [KS]
    K. Khanin and Y. Sinai, Existence of free energy for models with long range random Hamiltonian, J. Stat. Phys. 20, 573–584 (1979).Google Scholar
  16. [L]
    D. Loukianova, Lower bounds on the restitution error in the Hopfield Model, Probab. Theor. Rel. Fields 107, 161–176 (1997).MathSciNetMATHCrossRefGoogle Scholar
  17. [MPRV]
    R. McEliece, E. Posner, E. Rodemich, and S. Vankatesh, The capacity of the Hopfield associative memory, IEEE trans. Inform. Theor. 33, 461–482 (1987).MATHCrossRefGoogle Scholar
  18. [MPV]
    M. Mezard, G. Parisi, and M.-A. Virasoro, Spin-glass theory and beyond, World Scientific, Singapore, 1987.MATHGoogle Scholar
  19. [N]
    C. Newman, Memory capacity and neural networks models: rigourous lower bounds, Neural Networks 1, 223–238 (1988).CrossRefGoogle Scholar
  20. [P]
    D. Petritis, Equilibrium statistical mechanics of frustrated spin glasses: a survey of mathematical results, Ann. Inst. H. Poincaré (series Phys. Theor.) 64 255–288 (1996).MathSciNetMATHGoogle Scholar
  21. [PS]
    L. Pastur and M. Shcherbina, Absence of self-averaging of the order parameter in the Sherrington-Kirkpatrick model, J. Stat. Phys. 6, 1–19 (1991).MathSciNetCrossRefGoogle Scholar
  22. [ST]
    E. Scacciatelli and B. Tirozzi, Fluctuation of the free energy in the Hopfield model, J. Stat. Phys. 67, 981–1008 (1992).MathSciNetMATHCrossRefGoogle Scholar
  23. [SK]
    D. Sherrington and S. Kirkpatrick, Solvable model of a spin glass, Phys. Rev. Lett. 35, 1792–1796 (1975).CrossRefGoogle Scholar
  24. [T]
    M. Talagrand, The Sherrington-Kirkpatrick model. A challenge for mathematicians, Preprint, 1996.Google Scholar
  25. [T2]
    M. Talagrand, Rigourous results for the Hopfield model with many patterns, Preprint, 1996; “Résultats rigoureux pour le modèle de Hopfield.” C. R. Acad. Sci. Paris 321 109–112 (1995).MathSciNetMATHGoogle Scholar
  26. [To]
    A. Toubol, About the original Sherrington-Kirkpatrick model of spin glasses, C. R. Acad. Sci. Paris 321 Serie I 617–622 (1995).MathSciNetMATHGoogle Scholar
  27. [To2]
    A. Toubol, High temperature regime for a multidimensional Sherrington-Kirkpatrick model of spin glass, to appear in Probab. Theor. Rei Fields.Google Scholar
  28. [Z]
    B. Zegarlinski, Interactions and pressure functionals for disordered lattice systems, Commun. Math. Phys. 139 305–339 (1991).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1998

Authors and Affiliations

  • Francis Comets
    • 1
    • 2
  1. 1.University of CaliforniaIrvineUSA
  2. 2.UFR de MathématiquesUniversité Paris 7 — Denis Diderot, URA CNRS 1321 Modèles aléatoiresParis cedex 05France

Personalised recommendations