Skip to main content

Part of the book series: Progress in Probability ((PRPR,volume 41))

Abstract

Twenty years ago, Pastur and Figotin [FP1,FP2] first introduced and studied what has become known as the Hopfield model and which turned out, over the years, to be one of the more successful and important models of a disordered system. This is also reflected in the fact that several contributions in this book are devoted to it. The Hopfield model is quite versatile and models various situations. Pastur and Figotin introduced it as a simple model for a spin glass, and, in 1982, Hopfield independently considered it as a model for associative memory.

L’intuition ne peut nous donner la rigueur, ni même la certitude, on s’en est aperçu de plus en plus.

Henri Poincaré,

“La Valeur de La Science”

Work partially supported by the Commission of the European Union under contract CHRX-CT93-0411

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.J. Amit, Modelling brain function, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  2. D.J. Amit, H. Gutfreund and H. Sompolinsky, Statistical mechanics of neural networks near saturation, Ann. Phys. 173, 30–67 (1987).

    Article  Google Scholar 

  3. D.J. Amit, H. Gutfreund, and H. Sompolinsky, Spin-glass model of neural network, Phys. Rev. A 32, 1007–1018 (1985).

    MathSciNet  Google Scholar 

  4. A. Bovier, Self-averaging in a class of generalized Hopfield models, J. Phys. A 27, 7069–7077 (1994).

    MathSciNet  Google Scholar 

  5. A. Bovier and V. Gayrard, Rigorous bounds on the storage capacity for the dilute Hopfield model, J. Stat. Phys. 69, 597–627 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Bovier and V. Gayrard, Rigorous results on the thermodynamics of the dilute Hopfield model, J. Stat. Phys. 72, 643–664 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Bovier and V. Gayrard, Rigorous results on the Hopfield model of neural networks, Resenhas do IME-USP 2, 161–172 (1994).

    MathSciNet  Google Scholar 

  8. A. Bovier and V. Gayrard, An almost sure large deviation principle for the Hopfield model, Ann. Probab. 24, 1444–1475 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Bovier and V. Gayrard, The retrieval phase of the Hopfield model, A rigorous analysis of the overlap distribution, Probab. Theor. Rel. Fields 107, 61–98 (1995).

    Article  MathSciNet  Google Scholar 

  10. A. Bovier and V. Gayrard, Metatstates in the Hopfield model in the replica symmetric regime, preprint (1997).

    Google Scholar 

  11. A. Bovier, V. Gayrard, and P. Picco, Gibbs states of the Hopfield model in the regime of perfect memory, Probab. Theor. Rel. Fields 100, 329–363 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Bovier, V. Gayrard, and P. Picco, Large deviation principles for the Hopfield model and the Kac-Hopfield model, Probab. Theor. Rel. Fields 101, 511–546 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Bovier, V. Gayrard, and P. Picco, Gibbs states of the Hopfield model with extensively many patterns, J. Stat. Phys. 79, 395–414 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Bovier, V. Gayrard, and P. Picco, Distribution of overlap profiles in the one-dimensional Kac-Hopfield model, WIAS-preprint 221, to appear in Commun. Math. Phys. (1997).

    Google Scholar 

  15. A. Bovier and J. Fröhlich, A heuristic theory of the spin glass phase, J. Stat. Phys. 44, 347–391 (1986).

    Article  Google Scholar 

  16. H.J. Brascamp and E.H. Lieb, On extensions of the Brunn-Minkowski and Pékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Anal. 22, 366–389 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Comets, Large deviation estimates for a conditional probability distribution. Applications to random Gibbs measures, Probab. Theor. Rel. Fields 80, 407–432 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  18. Y.S. Chow and H. Teicher, Probability Theory, 2nd edition, Springer, Berlin-Heidelberg-New York, 1988.

    MATH  Google Scholar 

  19. E. Domany, J.L. van Hemmen, and K. Schulten (eds.), Models of Neural Networks, Springer-Verlag, Berlin, 1991.

    MATH  Google Scholar 

  20. J.-D. Deuschel and D. Stroock, Large Deviations, Academic Press, Boston, 1989.

    MATH  Google Scholar 

  21. A. Dembo and O. Zeitouni, Large Deviation Techniques and Applications, Jones and Bartlett, Boston, 1992.

    Google Scholar 

  22. R.S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  23. S.F. Edwards and P.W. Anderson, Theory of spin glasses, J. Phys. F 5, 965–974 (1975).

    Article  Google Scholar 

  24. T. Eisele and R.S. Ellis, Multiple phase transitions in the generalized Curie-Weiss model, J. Stat Phys. 52, 161–202 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  25. A.C.D. van Enter, Stiffness exponent, number of pure states, and Almeida-Thouless line in spin glasses, J. Stat. Phys. 60, 275–279 (1990).

    Article  MATH  Google Scholar 

  26. A.C.D. van Enter, J.L. van Hemmen and C. Pospiech, Mean-field theory of random-site q-state Potts models, J. Phys. A 21, 791–801 (1988).

    Google Scholar 

  27. D.S. Fisher and D.A. Huse, Pure phases in spin glasses, J. Phys. A 20, L997-L1003 (1987)

    MathSciNet  Google Scholar 

  28. D.S. Fisher and D.A. Huse, Absence of many states in magnetic spin glasses, J. Phys. A 20, L1005-L1010 (1987).

    MathSciNet  Google Scholar 

  29. L.A. Pastur and A.L. Figotin, Exactly soluble model of a spin glass, Sov. J. Low Temp. Phys. 3(6), 378–383 (1977).

    Google Scholar 

  30. L.A. Pastur and A.L. Figotin, On the theory of disordered spin systems, Theor. Math. Phys. 35, 403–414 (1978).

    Article  MathSciNet  Google Scholar 

  31. L.A. Pastur and A.L. Figotin, Infinite range limit for a class of disordered spin systems, Theor. Math. Phys. 51, 564–569 (1982).

    Article  MathSciNet  Google Scholar 

  32. C. Fassnacht and A. Zippelius, Recognition and Categorization in a structured neural network with attractor dynamics, Network 2, 63–84 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  33. V. Gayrard, The thermodynamic limit of the g-state Potts-Hopfield model with infinitely many patterns, J. Stat. Phys. 68, 977–1011 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Geman, A limit theorem for the norms of random matrices, Ann. Probab. 8, 252–261 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  35. H.O. Georgii, Gibbs Measures and Phase Transitions, Walter de Gruyter (de Gruyter Studies in Mathematics, Vol. 19), Berlin-New York, 1988.

    Book  MATH  Google Scholar 

  36. V.L. Girko, Limit theorems for maximal and minimal eigenvalues of random matrices, Theor. Probab. Appl. 35, 680–695 (1989).

    Article  MathSciNet  Google Scholar 

  37. E. Golez and S. Martínez, Neural and Automata Networks, Kluwer Academic Publ., Dodrecht, 1990.

    Google Scholar 

  38. J. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley, Redwood City, 1991.

    Google Scholar 

  39. J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982).

    Article  MathSciNet  Google Scholar 

  40. R.L. Stratonovich, On a method of calculating quantum distribution functions, Doklady Akad. Nauk S.S.S.R. 115, 1097 (1957) [translation: Soviet Phys. Doklady 2, 416–419 (1958)

    Google Scholar 

  41. J. Hubbard, Calculation of partition functions, Phys. Rev. Lett. 3, 77–78 (1959).

    Article  Google Scholar 

  42. J. Jedrzejewski and A. Kombda, On equivalent-neighbour, random-site models of disordered systems, Z. Phys. B 63, 247–257 (1986).

    Article  Google Scholar 

  43. J.L. van Hemmen, Equilibrium theory of spin-glasses: mean-field theory and beyond, in Heidelberg Colloquium on Spin Glasses, eds. J.L. van Hemmen and I. Morgenstern, 203–233 (1983), LNP 192 Springer, Berlin-Heidelberg-New York, 1983.

    Chapter  Google Scholar 

  44. J.L. van Hemmen, Spin glass models of a neural network, Phys. Rev. A 34, 3435–3445 (1986).

    Article  MathSciNet  Google Scholar 

  45. J.L. van Hemmen, D. Grensing, A. Huber and R. Kühn, Elementary solution of classical spin-glass models, Z. Phys. B 65, 53–63 (1986).

    Article  Google Scholar 

  46. J.L. van Hemmen and A.C.D. van Enter, Chopper model for pattern recognition, Phys. Rev. A 34, 2509–2512 (1986).

    Article  Google Scholar 

  47. J.L. van Hemmen, A.C.D. van Enter, and J. Canisius. On a classical spin-glass model, Z. Phys. B 50, 311–336 (1983).

    Article  Google Scholar 

  48. H. Koch, A free energy bound for the Hopfield model, J. Phys. A 26, L353-L355 (1993).

    Google Scholar 

  49. H. Koch and J. Piasko, Some rigorous results on the Hopfield neural network model, J. Stat. Phys. 55, 903–928 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  50. Ch. Külske, private communication.

    Google Scholar 

  51. M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, Berlin-Heidelberg-New York, 1991.

    MATH  Google Scholar 

  52. D. Loukianova, Two rigorous bounds in the Hopfield model of associative memory, to appear in Probab. Theor. Rel. Fields (1996).

    Google Scholar 

  53. J.M. Luttinger, Exactly soluble spin-glass model, Phys. Rev. Lett. 37, 778–782 (1976).

    Article  MathSciNet  Google Scholar 

  54. S. Martinez, Introduction to neural networks, preprint, Temuco, (1992).

    Google Scholar 

  55. D.C. Mattis, Solvable spin system with random interactions, Phys. Lett. 56A, 421–422 (1976).

    Google Scholar 

  56. R.J. McEliece, E.C. Posner, E.R. Rodemich, and S.S. Venkatesh, The capacity of the Hopfield associative memory, IEEE Trans. Inform. Theory 33, 461–482 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  57. Y. Miyashita, Neuronal correlate of visual associative long term memory in the primate temporal cortex, Nature 335, 817–819 (1988).

    Article  Google Scholar 

  58. E. Marinari, G. Parisi, and F. Ritort, On the 3D Ising spin glass, J. Phys. A 27, 2687–2708 (1994).

    MathSciNet  Google Scholar 

  59. M. Mézard, G. Parisi, and M.A. Virasoro, Spin-Glass Theory and Beyond, World Scientific, Singapore, 1988.

    Google Scholar 

  60. B. Müller and J. Reinhardt, Neural Networks: An Introduction, Springer-Verlag, Berlin, 1990.

    MATH  Google Scholar 

  61. V.A. Malyshev and F.M. Spieksma, Dynamics of binary neural networks with a finite number of patterns. Part 1: General picture of the asynchronous zero temperature dynamics, MPEJ 3, 1–36 (1997).

    MathSciNet  Google Scholar 

  62. Ch.M. Newman, Memory capacity in neural network models: Rigorous results, Neural Networks 1, 223–238 (1988).

    Article  Google Scholar 

  63. Ch.M. Newman and D.L. Stein, Non-mean-field behavior in realistic spin glasses, Phys. Rev. Lett. 76, 515–518 (1996);

    Article  Google Scholar 

  64. Ch.M. Newman and D.L. Stein, Spatial inhomogeneity and thermodynamic chaos, Phys. Rev. Lett. 76, 4821–4824 (1996);

    Article  Google Scholar 

  65. Ch.M. Newman and D.L. Stein, Topies in Disordered Systems, to appear in Birkhäuser, Boston, 1997; Thermodynamic Chaos and the Structure of Short Range Spin Glasses, this volume.

    Book  Google Scholar 

  66. D. Petritis, Thermodynamic formalism of neural computing, preprint, Université de Rennes, 1995.

    Google Scholar 

  67. L. Pastur and M. Shcherbina, Absence of self-averaging of the order parameter in the Sherrington-Kirkpatrick model, J. Stat. Phys. 62, 1–19 (1991).

    Article  MathSciNet  Google Scholar 

  68. L. Pastur, M. Shcherbina, and B. Tirozzi, The replica symmetric solution without the replica trick for the Hopfield model, J. Stat. Phys. 74, 1161–1183 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  69. P. Peretto and J.J. Niez, Long term memory storage capacity of multiconnected neural networks, Biolog. Cybernetics 39, 53–63 (1986).

    Article  Google Scholar 

  70. R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

    MATH  Google Scholar 

  71. A.W. Roberts and D.E. Varberg, Convex Functions, Academic Press, New York and London, 1973.

    MATH  Google Scholar 

  72. D. Sherrington and S. Kirkpatrick, Solvable model of a spin glass, Phys. Rev. Lett. 35, 1792–1796 (1972).

    Article  Google Scholar 

  73. J. Silverstein, Eigenvalues and eigenvectors of large sample covariance matrices, Contemporary Math. 50, 153–159 (1986).

    MathSciNet  Google Scholar 

  74. A.-S. Snitzman, Equations de type Boltzmann spatialement homogènes, Z. Wahrscheinlichkeitstheorie verw. Gebiete 66, 559–592 (1986).

    Google Scholar 

  75. M. Shcherbina and B. Tirozzi, The free energy for a class of Hopfield models, J. Stat Phys. 72, 113–125 (1992).

    Article  MathSciNet  Google Scholar 

  76. M. Schlüter and E. Wagner, Phys. Rev. E49, 1690 (1994).

    Google Scholar 

  77. V.V. Yurinskii, Exponential inequalities for sums of random vectors, J. Multivariate Anal. 6, 473–499 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  78. M. Talagrand, Concentration of measure and isoperimetric inequalities in product space, Publ. Math. I.H.E.S., 81, 73–205 (1995).

    MathSciNet  MATH  Google Scholar 

  79. M. Talagrand, A new look at independence, Ann. Probab. 24, 1–34 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  80. M. Talagrand, Résultats rigoureux pour le modèle de Hopfield, C. R. Acad. Sci. Paris, t. 321, Série I, 109–112 (1995).

    MathSciNet  Google Scholar 

  81. M. Talagrand, Rigorous results for the Hopfield model with many patterns, preprint 1996, to appear in Probab. Theor. Rel. Fields.

    Google Scholar 

  82. M. Talagrand, The Sherrington-Kirkpatrick model: A challenge for mathematicians, preprint (1996), to appear in Probab. Theor. Rel. Fields.

    Google Scholar 

  83. D.J. Thouless, P.W. Anderson, and R.G. Palmer, Phil Mag. 35, 593 (1977).

    Article  Google Scholar 

  84. Y.Q. Yin, Z.D. Bai, and P.R. Krishnaiah, On the limit of the largest eigenvalue of the large dimensional sample covariance matrix, Probab. Theor. Rel. Fields 78, 509–521 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  85. V.V. Yurinskii, Exponential inequalities for sums of random vectors, J. Multivariate Anal. 6, 473–499 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Birkhäuser Boston

About this chapter

Cite this chapter

Bovier, A., Gayrard, V. (1998). Hopfield Models as Generalized Random Mean Field Models. In: Bovier, A., Picco, P. (eds) Mathematical Aspects of Spin Glasses and Neural Networks. Progress in Probability, vol 41. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4102-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4102-7_1

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8653-0

  • Online ISBN: 978-1-4612-4102-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics