A Note on ODEs from Mirror Symmetry

  • A. Klemm
  • B. H. Lian
  • S. S. Roan
  • S. T. Yau
Part of the Progress in Mathematics book series (PM, volume 132)


We give close formulas for the counting functions of rational curves on complete intesection Calabi-Yau manifolds in terms of special solutions of generalized hypergeometric differential systems. For the one modulus cases we derive a differential equation for the Mirror map, which can be viewed as a generalization of the Schwarzian equation. We also derive a nonlinear seventh order differential equation which directly governs the Prepotential.


Manifold Mirror Symmetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Candelas, X. della Ossa, P. Green, L. Parkes, Nucl. Phys. B359 (1991) 21CrossRefGoogle Scholar
  2. [2]
    P. Aspinwall and D. Morrison, Commun. Math. Phys. 151 (1993) 45MathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Witten, Commun. Math. Phys. 118 (1988) 411MathSciNetMATHCrossRefGoogle Scholar
  4. E. Witten, Nucl. Phys. B371 (1992) 191MathSciNetCrossRefGoogle Scholar
  5. E. Witten, in Essays on Mirror Manifolds, Ed. S.-T. Yau, International Press, Hong Kong, 1992Google Scholar
  6. [4]
    R. Rohm and E. Witten, Ann. Phys. 234 (1987) 454MathSciNetGoogle Scholar
  7. [5]
    V. Batyrev and D. van Straten, Generalized hypergeometric functions and rational curves on Calabi- Yau complete intersections in toric varieties, Essen Preprint (1993)Google Scholar
  8. [6]
    S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hyper surf aces, HUTMP-93/0801, LMU-TPW-93–22 (hep-th/9308122), to be published in Commun. Math. Phys.Google Scholar
  9. [7]
    S. Hosono, A. Klemm, S. Theisen and S. T. Yau, Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces, Preprint HUTMP-94-02, hep-th 9406055Google Scholar
  10. [8]
    V. Batyrev, Dual Polyhedra and the Mirror Symmetry for Calabi- Yau Hy- persurfaces in Toric Varieties, Univ. Essen Preprint (1992), to appear in Journal of Alg. Geom.Google Scholar
  11. [9]
    R. Bryant and P. Griffiths, Arithmetic and Geometry, Progress in Mathematics 36 77, Birkhäuser Boston, 1983Google Scholar
  12. [10]
    P. Griffiths, Periods of integrals on algebraic manifolds, I and II., Amer. Jour. Math. vol. 90 (1968) 568MATHCrossRefGoogle Scholar
  13. P. Griffiths, Periods of integrals on algebraic manifolds, I and II., Ann. Math. 90 (1969) 460MATHCrossRefGoogle Scholar
  14. [11]
    I. M. Gelfand, A. V. Zelevinky and M. M. Kapranov, Hypergeometric functions and toral manifolds, Functional Anal. Appl. 23 2 (1989) 12, English trans., 1994Google Scholar
  15. [12]
    A. Strominger, Commun. Math. Phys. 133 (1990) 163MathSciNetMATHCrossRefGoogle Scholar
  16. P. Candelas and X. della Ossa, Nucl. Phys. B355(1991), ’455CrossRefGoogle Scholar
  17. [13]
    G. Tian, in Mathematical Aspects of String Theory, ed. S. T. Yau, World Scientific, Singapore, 1987Google Scholar
  18. [14]
    M. Bershadsky, S. Ceccotti, H. Ooguri and C. Vafa Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, HUTP-93/A025, RIMS-946, SISSA-142/93/EPGoogle Scholar
  19. [15]
    D. R. Morrison, in Essays on mirror manifolds, Ed. S.-T. Yau, International Press Singapore, 1992Google Scholar
  20. [16]
    M. Yoshida, Fuchsian Differential Equations, Frier. Vieweg & Sohn, Bonn, 1987Google Scholar
  21. [17]
    D. E. Sommervoll, Rational Curves of low degree on a complete intersection Calabi- Yau threefold in P 3 × P 3, Oslo preprint ISBN 82-553-0838-5.Google Scholar
  22. [18]
    E. Verlinde and N. Warner, Phys. Lett. 269 (1991) 96MathSciNetGoogle Scholar
  23. [19]
    A. Klemm, S. Theisen and M. Schmidt, Int. J. Mod. Phys. A7 (1992) 6215MathSciNetGoogle Scholar
  24. [20]
    A.O. Klemm, B.H. Lian, S.S. Roan and S.T. Yau, Differential Equations from Mirror Symmetry I, II, in preparation.Google Scholar
  25. [21]
    J.F. Ritt, Differential Algebra, Colloq. Publ. vol. 33, AMS, Providence, 1950MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 1996

Authors and Affiliations

  • A. Klemm
    • 1
  • B. H. Lian
    • 2
  • S. S. Roan
    • 3
  • S. T. Yau
    • 2
  1. 1.Theory DivisionCERNGeneva, 23Switzerland
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA
  3. 3.Institute of MathematicsAcademia SinicaTaipeiTaiwan

Personalised recommendations