A Note on ODEs from Mirror Symmetry

  • A. Klemm
  • B. H. Lian
  • S. S. Roan
  • S. T. Yau
Part of the Progress in Mathematics book series (PM, volume 132)

Abstract

We give close formulas for the counting functions of rational curves on complete intesection Calabi-Yau manifolds in terms of special solutions of generalized hypergeometric differential systems. For the one modulus cases we derive a differential equation for the Mirror map, which can be viewed as a generalization of the Schwarzian equation. We also derive a nonlinear seventh order differential equation which directly governs the Prepotential.

Keywords

Manifold Mirror Symmetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Candelas, X. della Ossa, P. Green, L. Parkes, Nucl. Phys. B359 (1991) 21CrossRefGoogle Scholar
  2. [2]
    P. Aspinwall and D. Morrison, Commun. Math. Phys. 151 (1993) 45MathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Witten, Commun. Math. Phys. 118 (1988) 411MathSciNetMATHCrossRefGoogle Scholar
  4. E. Witten, Nucl. Phys. B371 (1992) 191MathSciNetCrossRefGoogle Scholar
  5. E. Witten, in Essays on Mirror Manifolds, Ed. S.-T. Yau, International Press, Hong Kong, 1992Google Scholar
  6. [4]
    R. Rohm and E. Witten, Ann. Phys. 234 (1987) 454MathSciNetGoogle Scholar
  7. [5]
    V. Batyrev and D. van Straten, Generalized hypergeometric functions and rational curves on Calabi- Yau complete intersections in toric varieties, Essen Preprint (1993)Google Scholar
  8. [6]
    S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hyper surf aces, HUTMP-93/0801, LMU-TPW-93–22 (hep-th/9308122), to be published in Commun. Math. Phys.Google Scholar
  9. [7]
    S. Hosono, A. Klemm, S. Theisen and S. T. Yau, Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces, Preprint HUTMP-94-02, hep-th 9406055Google Scholar
  10. [8]
    V. Batyrev, Dual Polyhedra and the Mirror Symmetry for Calabi- Yau Hy- persurfaces in Toric Varieties, Univ. Essen Preprint (1992), to appear in Journal of Alg. Geom.Google Scholar
  11. [9]
    R. Bryant and P. Griffiths, Arithmetic and Geometry, Progress in Mathematics 36 77, Birkhäuser Boston, 1983Google Scholar
  12. [10]
    P. Griffiths, Periods of integrals on algebraic manifolds, I and II., Amer. Jour. Math. vol. 90 (1968) 568MATHCrossRefGoogle Scholar
  13. P. Griffiths, Periods of integrals on algebraic manifolds, I and II., Ann. Math. 90 (1969) 460MATHCrossRefGoogle Scholar
  14. [11]
    I. M. Gelfand, A. V. Zelevinky and M. M. Kapranov, Hypergeometric functions and toral manifolds, Functional Anal. Appl. 23 2 (1989) 12, English trans., 1994Google Scholar
  15. [12]
    A. Strominger, Commun. Math. Phys. 133 (1990) 163MathSciNetMATHCrossRefGoogle Scholar
  16. P. Candelas and X. della Ossa, Nucl. Phys. B355(1991), ’455CrossRefGoogle Scholar
  17. [13]
    G. Tian, in Mathematical Aspects of String Theory, ed. S. T. Yau, World Scientific, Singapore, 1987Google Scholar
  18. [14]
    M. Bershadsky, S. Ceccotti, H. Ooguri and C. Vafa Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, HUTP-93/A025, RIMS-946, SISSA-142/93/EPGoogle Scholar
  19. [15]
    D. R. Morrison, in Essays on mirror manifolds, Ed. S.-T. Yau, International Press Singapore, 1992Google Scholar
  20. [16]
    M. Yoshida, Fuchsian Differential Equations, Frier. Vieweg & Sohn, Bonn, 1987Google Scholar
  21. [17]
    D. E. Sommervoll, Rational Curves of low degree on a complete intersection Calabi- Yau threefold in P 3 × P 3, Oslo preprint ISBN 82-553-0838-5.Google Scholar
  22. [18]
    E. Verlinde and N. Warner, Phys. Lett. 269 (1991) 96MathSciNetGoogle Scholar
  23. [19]
    A. Klemm, S. Theisen and M. Schmidt, Int. J. Mod. Phys. A7 (1992) 6215MathSciNetGoogle Scholar
  24. [20]
    A.O. Klemm, B.H. Lian, S.S. Roan and S.T. Yau, Differential Equations from Mirror Symmetry I, II, in preparation.Google Scholar
  25. [21]
    J.F. Ritt, Differential Algebra, Colloq. Publ. vol. 33, AMS, Providence, 1950MATHGoogle Scholar

Copyright information

© Birkhäuser Boston 1996

Authors and Affiliations

  • A. Klemm
    • 1
  • B. H. Lian
    • 2
  • S. S. Roan
    • 3
  • S. T. Yau
    • 2
  1. 1.Theory DivisionCERNGeneva, 23Switzerland
  2. 2.Department of MathematicsHarvard UniversityCambridgeUSA
  3. 3.Institute of MathematicsAcademia SinicaTaipeiTaiwan

Personalised recommendations