Advertisement

Silk

  • David L. Kaplan
  • Charlene M. Mello
  • Steve Arcidiacono
  • Steve Fossey
  • Kris Senecal
  • Wayne Muller
Part of the Bioengineering of Materials book series (BOM)

Abstract

A number of recent reviews and books on silkworm and spider silks have been published and the historical aspects of the field are reviewed therein (Livengood, 1990; Robson, 1985; Asakura and Kaplan, 1995; Kaplan et al., 1991, 1992b, 1994). Silks can be defined as externally spun fibrous protein secretions. Of the natural fibers, silks represent the only ones that are spun by the producing organism. These fibers are remarkable materials when considering their biosynthesis, processing, and functional properties. These proteins are produced within specialized glands by a variety of organisms including silkworms (and most other lepidoptera larvae), spiders, scorpions, mites, and flies. Silks differ in properties, composition, and morphology depending on the source, and in many spiders different silks are synthesized for different functions.

Keywords

Silk Fibroin Silk Fiber Silk Gland Silk Protein Spider Silk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen SO (1970): Amino acid composition of spider silks. Comp Biochem Physiol 35:705–711CrossRefGoogle Scholar
  2. Anderson JP, Stephen-Hassard M, Martin DC (1994a): Structural evolution of genetically engineered silklike protein polymers. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  3. Anderson JP, Cappello J, Martin DC (1994b): Morphology and primary crystal structure of a silk-like protein polymer synthesized by genetically engineered Escherichia coli bacteria. Biopolymers 34:1049–1057PubMedCrossRefGoogle Scholar
  4. Ando Y, Okano R, Nishida K, Miyata S, Fukade E (1980): Piezoelectric and related properties of hydrated silk fibroin. Rep Prog Polymer Physics Japan 23:775–778Google Scholar
  5. Asakura T, Kaplan DL (1995): ‘Silk production and processing’ In:Encyclopedia of Agricultural Science. New York: Academic PressGoogle Scholar
  6. Asakura T, Demura M, Uyama A, Ogawa K, Komatsu K, Nicholson LK, Cross TA (1994): NMR characterization of silk proteins. In: Silk Polymers: Materials Science and Biotechology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  7. Asakura T, Watanabe Y, Uchita A, Minagawa H (1984): NMR of silk fibroin. 2. 13CNMR study of the chain dynamics and solution structure of Bombyx mori silk fibroin. Macromolecules 17:1075–1081CrossRefGoogle Scholar
  8. Asakura T, Kuzuhara A, Tabeta R, Saito H (1985): Conformation characterization of Bombyx mori silk fibroin in the solid state by high-frequency 13C cross polarization-magic angle spinning NMR, X-ray diffraction and infrared spectroscopy. Macromolecules 18:1841–1845CrossRefGoogle Scholar
  9. Asakura T, Sakaguchi R, Demura M, Manabe T, Uyama A, Ogawa K, Osanai M (1993): In vitro production of Bombyx mori silk fibroin by organ culture of the posterior silk glands; isotope labeling and fluorination of the silk fibroin. 41:245–252Google Scholar
  10. Becker MA, Tuross N (1994): Initial degradation changes found in Bombyx mori silk fibroin. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. ••: American Chemical Society Symposium Series 544Google Scholar
  11. Becker MA, Mahoney DV, Lenhert PG, Eby RK, Kaplan D, Adams WW (1994): X-ray moduli of silk fibers from Nephila clavipes and Bombyx mori. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. ••: American Chemical Society Symposium Series 544Google Scholar
  12. Beckwitt R, Arcidiacono S (1994): Sequence conservation in the C-terminal region of spider silk proteins (Spidroin) from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae). J Biol Chem 269:6661–6663PubMedGoogle Scholar
  13. Candelas GC, Cintron JJ (1981): A spider fibroin and its synthesis. J Exp Zoology 216:1–6CrossRefGoogle Scholar
  14. Candelas GC, Lopez F (1983): Synthesis of fibroin in the cultured glands of Nephila clavipes. Comp Biochem Physiol 74:637–641Google Scholar
  15. Candelas GC, Candelas T, Ortiz A, Rodriguez O (1983): Translational pauses during a spider fibroin synthesis. Biochem Biophys Res Commun 116:1033–1038PubMedCrossRefGoogle Scholar
  16. Capello J, McGrath KP (1994): Spinning of protein polymer fibers. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  17. Capello J, Crissman J, Dorman M, Mikolajczak M, Textor G, Marquet M, Ferrari FA (1990): Genetic engineering of structural protein polymers. Biotech Prog 6:198–202CrossRefGoogle Scholar
  18. Case ST, Smith SV (1994): Synthetic and recombinant domains from a Midge’s giant silk protein: role for disulfide bonds. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  19. Case ST, Powers J, Hamilton K, Burton MJ (1994): Silk and silk proteins from two aquatic insects. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  20. Chevallier A, Garel JP (1979): Studies on tRNA adaptation, tRNA turnover, precursor tRNA and tRNA gene distribution in Bombyx mori by using two-dimensional polyacrylamide gel electrophoresis. Biochimie 61:245–262PubMedCrossRefGoogle Scholar
  21. Colonna-Cesari F, Premilat S, Lotz B (1975): Conformational analysis of the beta sheet structure of poly-L-alanine and poly (L-alanyl-glycine). J Mol Biol 95:71–82PubMedCrossRefGoogle Scholar
  22. Couble PM, Chvillard M, Moine A, Ravel-Chapuis P, Prudhomme J-C (1985): 13:1801Google Scholar
  23. Craig CL (1994): Importance of unique silk protein to the ecological and evolutionary diversity of araneid spider. In: Silk Polymers: Materials Science and Biotecnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. ••: American Chemical Society Symposium Series 544Google Scholar
  24. Craig CL (1992): Trends in Ecol Evoln 7:270CrossRefGoogle Scholar
  25. Craig CL, Bernard GD (1989): Insect attraction to ultraviolet-reflecting spider webs and web decorations. Ecology 71:616–623CrossRefGoogle Scholar
  26. Cunniff PM, Fossey SA, Auerbach MA, Song JW (1994a): Mechanical properties of major ampullate gland silk fibers extracted from Nephila clavipes spiders. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  27. Cunniff PM, Fossey SA, Auerbach MA, Song JW, Kaplan DL, Adams WW, Eby RK, Mahoney D, Vezie DL (1994b): Mechanical and thermal properties of dragline slik from the spider Nephila clavipes. Poly Adv Technol 5:401–410CrossRefGoogle Scholar
  28. Demura M, Asakura T (1991): Porous membrane of Bombyx mori silk fibroin: structure characterization, physical properties and application to glucose oxidase immobilization. J Membrane Sci 59:39–52CrossRefGoogle Scholar
  29. Denny MW (1980): Silks—their properties and functions. In: Mechanical Properties of Biological Materials, Vincent JFV, Currey JD, eds. Washington, DC: Cambridge University PressGoogle Scholar
  30. Denny MW, (1976): The physical properties of spider’s silk and their role in the design of orb-webs. J Exp Biol 65:483–506Google Scholar
  31. Edmonds DT, Vollrath F (1992): Proc Royal Soc Lond. B248:145Google Scholar
  32. Fahnestock SR (1994): Novel, recombinantly produced spider silk analogs. European Patent Filing WO 94/29450Google Scholar
  33. Foelix RF (1992): Biology of Spiders. Cambridge, MA: Harvard University PressGoogle Scholar
  34. Fossey S, Kaplan DL (1994): Molecular modeling studies on silk peptides. In: Slik Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  35. Fossey SA, Nemthy G, Gibson KD, Scheraga HA (1991): Conformational energy studies of ß-sheets of model silk fibron peptides. I. Sheets of alanine and glycine. Biopolymers 3:1529CrossRefGoogle Scholar
  36. Fossey S, Gibson KD, Nemethy G, Kaplan DL, Scheraga HA (1996): In preparationGoogle Scholar
  37. Fraser RDB, MacRae TP (1973): Silks. In:Conformation in Fibrous Proteins. New York: Academic PressGoogle Scholar
  38. Fraser RDB, MacRae TP, Stewart FHC, Suzuki E (1965): Poly-L-alanylglycine. J Mol Biol 11:706–712PubMedCrossRefGoogle Scholar
  39. Gage LP, Manning RF (1980a): Internal structure of the silk fibroin gene of Bombyx mori. J Biol Chem 255:9444–9450Google Scholar
  40. Garel JP, Hentzen D, Schlegel M, Dirheimer G (1976): Structural studies on RNA from Bombyx mori. Biochimie 58:1089–1100Google Scholar
  41. Gillespie DB, Viney C, Yager P (1994): Raman spectroscopic analysis of the secondary structure of spider silk fibers. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  42. Goldsmith MR, Shi J (1994): Molecular map for the silkworm: constructing new links between basic and applied research. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  43. Gosline JM, Denny MW, DeMont ME (1984): Spider silk as rubber. Nature 3009:551–552CrossRefGoogle Scholar
  44. Gosline JM, DeMont ME, Denny MW (1986): The structure and properties of spider silk. Endeavour 10:37–43CrossRefGoogle Scholar
  45. Hentzen D, Chevallier A, Garel JP (1981): Differential use of iso-accepting tRNASer species in silk glands of Bombyx mori. Nature 290:267–269CrossRefGoogle Scholar
  46. Hinman MB, Lewis RV (1992): Isolation of a clone encoding a second dragline silk fibroin, Nephila clavipes dragline silk is a two protein fiber. J Biol Chem 267:19320–19324PubMedGoogle Scholar
  47. Hyde N (1984): The queen of textiles. National Georgraphic 165:3–49Google Scholar
  48. Ilzuka E (1985a): Silk Thread: mechanism of spinning and its mechanical properties. J Appl Poly Sci Japan 41:173–185Google Scholar
  49. Ilzuka E (1985b): Silk: an overview. J Appl Poly Sci Japan 41:163–171Google Scholar
  50. Ito T (1978): Silkworm nutrition. In: The Silkworm, Tazima Y, ed. Tokyo: KodanshaGoogle Scholar
  51. Jackson C, O’Brien JP (1995): Molecular weight distribution of Nephila clavipes dragline silk. Macromolecules 28:5975–5977CrossRefGoogle Scholar
  52. Kaplan DL, Lombardi SJ, Muller WS, Fossey SA (1991): “Silks”. In: Biomaterials: Novel Materials from Biological Sources Byrom D, ed. New York: StocktonGoogle Scholar
  53. Kaplan DL, Fossey S, Viney C, Muller W (1992a): Self-organization (assembly) in biosynthesis of silk fibers—a hierarchical problem. In: Hierarchically Structured Materials, Aksay IA, Baer E, Sarikaya M, Tirrell DA, eds. Proc Materials Res Soc, Pittsburgh, PAGoogle Scholar
  54. Kaplan DL, Adams WW, Viney C, Farmer B (1994): Silks: Materials Science and Biotechnology. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  55. Kaplan DL, Fossey S, Mello CM, Arcidiacono S, Senecal K, Muller W, Stockwell S, Beckwitt R, Viney C, Kerkam K (1992b): Biosynthesis and processing of silk proteins. Mails Res Soc Bull 10:41–47Google Scholar
  56. Kerkam K, Viney C, Kaplan DL, Lombardi SJ (1991): Liquid crystalline characteristics of natural silk secretions. Nature 349:596–598CrossRefGoogle Scholar
  57. Laible RC (1980): Fibrous armor. In: Ballistic Materials and Penetration Mechanics, Laible RC, ed. Amsterdam: ElsevierGoogle Scholar
  58. Lewis RV, Colgin M (1995): cDNAs encoding minor ampullate spider silk proteins. European Patent Filing WO 95/25165Google Scholar
  59. Lin LH, Edmonds DT, Vollrath F (1995): Structural engineering of an orb-spider’s web. Nature 273:146–148CrossRefGoogle Scholar
  60. Livengood CD (1990): Silk. In: Poymers-Fibers and Textiles: A Compendium, Kroschowitz JI, ed. New York: WileyGoogle Scholar
  61. Lizardi PM (1979): Discontinuous translation of silk fibroin in a reticulocyte cell-free system and in intact silk gand cells. Proc Natl Acad Sci USA 76:6211–6215PubMedCrossRefGoogle Scholar
  62. Lock R (1993): Fiber-spinnable solutions of silkworm fibroin. PCT Patent W093/15244Google Scholar
  63. Lombardi SJ, Kaplan DL (1990): The amino acid composition of major ampullate gland silk (dragline) of Nephila clavipes (Araneae, Tetrgnathidae). J ArachnoI 18:297–306Google Scholar
  64. Lombardi SJ, Kaplan DL (1991): The Nephila clavipes major ampullate gland silk protein, amino acid composition and detection of silk gene-related nucleic acids in the genome. Acta Zool Fennica 190:243Google Scholar
  65. Lotz B, Colonna-Cesari F (1979): The chemical structure and crystalline structures of Bombyx mori silk fibroin. Biochimie 61:205–214PubMedCrossRefGoogle Scholar
  66. Lotz B, Keith HD (1971): Crystal structure of poly(L-Ala-Gly) II. J Mol Biol 61:201–215PubMedCrossRefGoogle Scholar
  67. Lucas F, Shaw JTB, Smith SG (1958): In: Advances in Protein Chemistry, Anfinsen CB, Anson ML, Bailey K, Edsall JT, eds. New York: Academic PressGoogle Scholar
  68. Lucas F, Rudall KM (1968): In: Comprehensive Biochemistry: Extracellular and Supporting Structures, Florkin M, Stotz EH, eds. Amsterdam: ElsevierGoogle Scholar
  69. Lucas F, Shaw JTB, Smith SG (1960): Comparative studies of fibroins I. The amino acid composition of various fibroins and its signficance in relation to their crystal structure and taxonomy. J Mol Biol 2:339–349PubMedCrossRefGoogle Scholar
  70. Lucas F, Shaw JTB, Smith SG (1962): Some amino acid sequences in the amorphous fraction of the fibroin of Bombyx mori. Biochem J 83:164–171Google Scholar
  71. Mahoney DV, Vezie DL, Eby RK, Adams WW, Kaplan DL (1994): In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  72. Magoshi J, Magoshi Y, Nakamura S (1994): Mechanism of fiber formation of silkworm. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  73. Magoshi J, Magoshi Y (1977): Physical properties and structure of silk. V. Thermal behavior of silk fibroin in the random-coil conformation. J Polym Sci Japan 15:1675–1683Google Scholar
  74. Magoshi J, Magoshi Y, Nakamura S (1985): Crystallization, liquid crystal, and fiber formation of silk fibroin. J Appl Poly Sci 41:187–204Google Scholar
  75. Manning RF, Gage LP (1978): Physical map of the Bombyx mori DNA containing the gene for silk fibroin. J Biol Chem 253:2044–2052PubMedGoogle Scholar
  76. Manning RF, Gage LP (1980): Internal structure of the silk fibroin gene of Bombyx mori. II. Remarkable polymorphism of the organization of crystalline and amorphous coding sequences. J Biol Chem 255:9451–9457PubMedGoogle Scholar
  77. Marsh RE, Corey RB, Paulling L (1995): An investigation of the structure of silk fibroin. Biochim Biophys Acta 16:1–34CrossRefGoogle Scholar
  78. McNamee SG, Ober CK, Jelinski LW, Ray E, Xia Y, Grubb DT (1994): Toward single-fiber diffraction of spider dragline silk from Nephila clavipes. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  79. Mello CM, Senecal K, Yeung B, Vouros P, Kaplan DL (1994): Initial characterization of Nephila clavipes dragline protein. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  80. Minoura N, Tsuada M, Nagura M (1990a): Fine structure and oxygen permeability of silk fibroin membrane treated with methanol. Polymer 31:265–269CrossRefGoogle Scholar
  81. Minoura N, Tsukada M, Nagura M (1990b): Physio-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials 11:430–434PubMedCrossRefGoogle Scholar
  82. Mita K, Ichimura S, Zama M, James TC (1988): Specific codon usage pattern and its implications on the secondary structure of silk fibroin mRNA. J Mol Biol 203:917–925PubMedCrossRefGoogle Scholar
  83. Mita K, Ichimura S, James TC (1994): Highly repetitive structure and its organization of silk fibroin gene. J Mol Evol 38:583–592PubMedCrossRefGoogle Scholar
  84. Muller WS, Samuelson LA, Fossey SA, Kaplan DL (1993): Formation and characterization of Langmuir silk films. Langmuir 9:1857–1861CrossRefGoogle Scholar
  85. Nakamura S, Magoshi J, Magoshi Y (1994): Thermal properties of silk proteins in silkworms. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  86. Nicholson LK, Asakura T, Demura M, Cross TA (1993): A method for studying the structure of uniaxially aligned biopolymers using solid state 15N-NMR: application to Bombyx mori silk fibroin fibers. Biopolymers 33:847–861PubMedCrossRefGoogle Scholar
  87. Okamoto H, Ishikawa E, Suzuiki Y (1982): Structural analysis of sericin genes. J Biol Chem 257:15192–15199PubMedGoogle Scholar
  88. Oshima Y, Suzuki Y (1977): Cloning of the silk fibroin genes and its flanking sequences. Proc Natl Acad Sci USA 74:5363–5367CrossRefGoogle Scholar
  89. Pachter R, Crane RL, Adams WW (1994): Approaches to modeling and property predictions of model peptides. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  90. Prince JT, McGrath KP, DiGirolamo CM, Kaplan DL (1995): Construction, cloning and expression of synthetic spider dragline silk DNA. Biochemistry 34:10879–10885PubMedCrossRefGoogle Scholar
  91. Robson RM (1985): Silk composition, structure and properties. In: Fiber Chemistry Handbook of Science and Technology, Vol. IV, Lewin M, Pearce E, eds. New York: Marcel DekkerGoogle Scholar
  92. Selden PA (1989): Orb-weaving spiders in the early Cretaceous. Nature 340:711–712CrossRefGoogle Scholar
  93. Senecal K, Mello C, Kaplan DL (1996): In preparationGoogle Scholar
  94. Shear WA, Palmer J A, Coddington J A, Bonamo PM (1989): A Devonian spinneret: early evidence of spiders and silk use. Science 246:479–481PubMedCrossRefGoogle Scholar
  95. Simmons A, Ray E, Jelinski LW (1994): Solid state 13C-NMR of Nephila clavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules 27:5235–5237CrossRefGoogle Scholar
  96. Simmons AH, Michal CA, Jelinski LW (1996): Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271:84–87PubMedCrossRefGoogle Scholar
  97. Sprague KU (1975): The Bombyx mori silk proteins: characterization of large polypeptides. Biochemistry 14:925–931PubMedCrossRefGoogle Scholar
  98. Sprague KU, Roth MB, Manning RF, Gage LP (1979): Alleles of the fibroin gene coding for proteins of different lengths. Cell 17:407–413PubMedCrossRefGoogle Scholar
  99. Strydom DJ, Haylett T, Stead RH (1977): The amino-terminal sequence of silk fibroin peptide Cp—a reinvestigation. Biochem Biophys Res Commun 79:932–938PubMedCrossRefGoogle Scholar
  100. Suzuki Y, Brown DD (1972): Isolation and identification of the messenger RNA for silk fibroin from Bombyx mori. J Mol Biol 63:409–429Google Scholar
  101. Suzuki Y, Oshima Y (1977): Isolation and characterization of the silk fibrion gene with its flanking sequences. Cold Spring Harbor Symp Quant Biol 42:947–957CrossRefGoogle Scholar
  102. Suzuki Y, Takiya S, Kuzuki T, Hui C-C, Matsuno K, Fukuta M, Nagata T, Ueono K (1990): Developmental regulation of silk gene expression in Bombyx mori. In: Molecular Insect Science, Gagedorn HH, ed. New York: Plenum PressGoogle Scholar
  103. Suzuki Y, Gage LP, Brown DD (1972): The genes for silk fibroin in Bombyx mori. J Mol Biol 70:637–649Google Scholar
  104. Takashasi Y (1994): Crystal structure of silk of Bombyx mori. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  105. Tashiro Y, Morimoto T, Matsura S, Nagata S (1968): Studies on the posterior silk gland of the silkworm, Bombyx mori. J Cell Biol 38:574–588Google Scholar
  106. Termonia Y (1994): Molecular modeling of spider silk elasticity. Macromolecules 27:7378–7381CrossRefGoogle Scholar
  107. Thiel B, Kunkel D, Guess K, Viney C (1994): Composite microstructure of spider (Nephila clavipes) dragline. Mat Res Soc Symp Proc 330:21–30CrossRefGoogle Scholar
  108. Tillinghast EK, Townley MA (1994): Silk glands of Araneid spiders: selected morphological and physiological aspects. In: Silk Polymers:Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  109. Tillinghast EK, Chase SF, Townley MA (1984): Water extraction by the major ampullate duct during silk formation in the spider Argiope aurantia Lucas. J Insect Physiol 30:591–596CrossRefGoogle Scholar
  110. Townley MA, Tillinghast EK (1988): Orb web recycling in Araneus cavaticus (Araneae, Araneidae) with an emphasis on the adhesive spiral component, gabamide. J Arachnol 16:303–319Google Scholar
  111. Tsuijimoto Y, Suzuki Y (1979a): Structural analysis of the fibroin gene at the 5’ end and its surrounding regions. Cell 16:425–436CrossRefGoogle Scholar
  112. Tsuijimoto Y, Suzuki Y (1979b): The DNA sequence of Bombyx mori fibroin gene including the 5’ flanking, mRNA coding, entire intervening and fibroin protein coding regions. Cell 18:591–600CrossRefGoogle Scholar
  113. Valluzzi R, Gido SP, Zhang W, Muller WS, Kaplan DL (1996): A trigonal crystal structure of Bombyx mori silk incorporating a threefold helical chain conformation found at the air-water interface. Macromolecules: In pressGoogle Scholar
  114. Viney C, Huber AE, Dunaway DL, Kerkam K, Case ST (1994): Optical characterization of silk secretions and fibers. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  115. Vollrath F (1994): General properties of some spider silks. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544Google Scholar
  116. Vollrath F, Fairbrother WJ, Williams RJP, Tillinghast EK, Bernstein DT, Gallagher KS, Townley MA (1990): Compounds in the droplets of the orb spider’s viscid spiral. Nature 345:526–528CrossRefGoogle Scholar
  117. Warwicker JO (1960): Comparative studies of fibroins. II. The cystal structures of various fibroins. J Mol Biol 2:350–362PubMedCrossRefGoogle Scholar
  118. Work RW (1977): Dimension, birefringence and force-elongation behavior of major and minor ampullate silk fibers from orb-web spinning spiders—the effects of wetting on their properties. Text Res J 47:650–662Google Scholar
  119. Work RW (1981): A comparative study of the supercontraction of major ampullate silk fibers of orb-web-building spiders (Araneae). J Arachnol 9:299–308Google Scholar
  120. Work RW (1984): Duality in major ampullate silk and precursive material from orb-web-building spiders (Araneae). Trans American Microscopy Soc 103:113–121CrossRefGoogle Scholar
  121. Work RW, Emerson PD (1982): An apparatus and technique for the forcible silking of spiders. J Arachnol 10:1–10Google Scholar
  122. Xu M, Lewis RV (1990): Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci USA 87:7120–7124PubMedCrossRefGoogle Scholar
  123. Yamaguchi K, Kikuchi Y, Takagai T, Kikuchi A, Oyama F, Shimura K, Mizuno S (1989): Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. J Mol Biol 210:127–139PubMedCrossRefGoogle Scholar
  124. Yoshimizu H, Asakura T (1990): Preparation and characterization of silk fibroin powder and its application to enzyme immobilization. J Appl Poly Sci 40:127–134CrossRefGoogle Scholar
  125. Zemlin JC (1968): A study of the mechanical behavior of spider silks. Report 69–29-CM (AD684333) U.S. Army Natick Laboratories, Natick, MAGoogle Scholar

Copyright information

© Birkhäuser boston 1997

Authors and Affiliations

  • David L. Kaplan
  • Charlene M. Mello
  • Steve Arcidiacono
  • Steve Fossey
  • Kris Senecal
  • Wayne Muller

There are no affiliations available

Personalised recommendations