Skip to main content

Part of the book series: Bioengineering of Materials ((BOM))

Abstract

A number of recent reviews and books on silkworm and spider silks have been published and the historical aspects of the field are reviewed therein (Livengood, 1990; Robson, 1985; Asakura and Kaplan, 1995; Kaplan et al., 1991, 1992b, 1994). Silks can be defined as externally spun fibrous protein secretions. Of the natural fibers, silks represent the only ones that are spun by the producing organism. These fibers are remarkable materials when considering their biosynthesis, processing, and functional properties. These proteins are produced within specialized glands by a variety of organisms including silkworms (and most other lepidoptera larvae), spiders, scorpions, mites, and flies. Silks differ in properties, composition, and morphology depending on the source, and in many spiders different silks are synthesized for different functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen SO (1970): Amino acid composition of spider silks. Comp Biochem Physiol 35:705–711

    Article  CAS  Google Scholar 

  • Anderson JP, Stephen-Hassard M, Martin DC (1994a): Structural evolution of genetically engineered silklike protein polymers. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Anderson JP, Cappello J, Martin DC (1994b): Morphology and primary crystal structure of a silk-like protein polymer synthesized by genetically engineered Escherichia coli bacteria. Biopolymers 34:1049–1057

    Article  PubMed  CAS  Google Scholar 

  • Ando Y, Okano R, Nishida K, Miyata S, Fukade E (1980): Piezoelectric and related properties of hydrated silk fibroin. Rep Prog Polymer Physics Japan 23:775–778

    Google Scholar 

  • Asakura T, Kaplan DL (1995): ‘Silk production and processing’ In:Encyclopedia of Agricultural Science. New York: Academic Press

    Google Scholar 

  • Asakura T, Demura M, Uyama A, Ogawa K, Komatsu K, Nicholson LK, Cross TA (1994): NMR characterization of silk proteins. In: Silk Polymers: Materials Science and Biotechology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Asakura T, Watanabe Y, Uchita A, Minagawa H (1984): NMR of silk fibroin. 2. 13CNMR study of the chain dynamics and solution structure of Bombyx mori silk fibroin. Macromolecules 17:1075–1081

    Article  CAS  Google Scholar 

  • Asakura T, Kuzuhara A, Tabeta R, Saito H (1985): Conformation characterization of Bombyx mori silk fibroin in the solid state by high-frequency 13C cross polarization-magic angle spinning NMR, X-ray diffraction and infrared spectroscopy. Macromolecules 18:1841–1845

    Article  CAS  Google Scholar 

  • Asakura T, Sakaguchi R, Demura M, Manabe T, Uyama A, Ogawa K, Osanai M (1993): In vitro production of Bombyx mori silk fibroin by organ culture of the posterior silk glands; isotope labeling and fluorination of the silk fibroin. 41:245–252

    CAS  Google Scholar 

  • Becker MA, Tuross N (1994): Initial degradation changes found in Bombyx mori silk fibroin. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. ••: American Chemical Society Symposium Series 544

    Google Scholar 

  • Becker MA, Mahoney DV, Lenhert PG, Eby RK, Kaplan D, Adams WW (1994): X-ray moduli of silk fibers from Nephila clavipes and Bombyx mori. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. ••: American Chemical Society Symposium Series 544

    Google Scholar 

  • Beckwitt R, Arcidiacono S (1994): Sequence conservation in the C-terminal region of spider silk proteins (Spidroin) from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae). J Biol Chem 269:6661–6663

    PubMed  CAS  Google Scholar 

  • Candelas GC, Cintron JJ (1981): A spider fibroin and its synthesis. J Exp Zoology 216:1–6

    Article  CAS  Google Scholar 

  • Candelas GC, Lopez F (1983): Synthesis of fibroin in the cultured glands of Nephila clavipes. Comp Biochem Physiol 74:637–641

    Google Scholar 

  • Candelas GC, Candelas T, Ortiz A, Rodriguez O (1983): Translational pauses during a spider fibroin synthesis. Biochem Biophys Res Commun 116:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Capello J, McGrath KP (1994): Spinning of protein polymer fibers. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Capello J, Crissman J, Dorman M, Mikolajczak M, Textor G, Marquet M, Ferrari FA (1990): Genetic engineering of structural protein polymers. Biotech Prog 6:198–202

    Article  Google Scholar 

  • Case ST, Smith SV (1994): Synthetic and recombinant domains from a Midge’s giant silk protein: role for disulfide bonds. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Case ST, Powers J, Hamilton K, Burton MJ (1994): Silk and silk proteins from two aquatic insects. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Chevallier A, Garel JP (1979): Studies on tRNA adaptation, tRNA turnover, precursor tRNA and tRNA gene distribution in Bombyx mori by using two-dimensional polyacrylamide gel electrophoresis. Biochimie 61:245–262

    Article  PubMed  CAS  Google Scholar 

  • Colonna-Cesari F, Premilat S, Lotz B (1975): Conformational analysis of the beta sheet structure of poly-L-alanine and poly (L-alanyl-glycine). J Mol Biol 95:71–82

    Article  PubMed  CAS  Google Scholar 

  • Couble PM, Chvillard M, Moine A, Ravel-Chapuis P, Prudhomme J-C (1985): 13:1801

    CAS  Google Scholar 

  • Craig CL (1994): Importance of unique silk protein to the ecological and evolutionary diversity of araneid spider. In: Silk Polymers: Materials Science and Biotecnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. ••: American Chemical Society Symposium Series 544

    Google Scholar 

  • Craig CL (1992): Trends in Ecol Evoln 7:270

    Article  CAS  Google Scholar 

  • Craig CL, Bernard GD (1989): Insect attraction to ultraviolet-reflecting spider webs and web decorations. Ecology 71:616–623

    Article  Google Scholar 

  • Cunniff PM, Fossey SA, Auerbach MA, Song JW (1994a): Mechanical properties of major ampullate gland silk fibers extracted from Nephila clavipes spiders. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Cunniff PM, Fossey SA, Auerbach MA, Song JW, Kaplan DL, Adams WW, Eby RK, Mahoney D, Vezie DL (1994b): Mechanical and thermal properties of dragline slik from the spider Nephila clavipes. Poly Adv Technol 5:401–410

    Article  CAS  Google Scholar 

  • Demura M, Asakura T (1991): Porous membrane of Bombyx mori silk fibroin: structure characterization, physical properties and application to glucose oxidase immobilization. J Membrane Sci 59:39–52

    Article  CAS  Google Scholar 

  • Denny MW (1980): Silks—their properties and functions. In: Mechanical Properties of Biological Materials, Vincent JFV, Currey JD, eds. Washington, DC: Cambridge University Press

    Google Scholar 

  • Denny MW, (1976): The physical properties of spider’s silk and their role in the design of orb-webs. J Exp Biol 65:483–506

    Google Scholar 

  • Edmonds DT, Vollrath F (1992): Proc Royal Soc Lond. B248:145

    Google Scholar 

  • Fahnestock SR (1994): Novel, recombinantly produced spider silk analogs. European Patent Filing WO 94/29450

    Google Scholar 

  • Foelix RF (1992): Biology of Spiders. Cambridge, MA: Harvard University Press

    Google Scholar 

  • Fossey S, Kaplan DL (1994): Molecular modeling studies on silk peptides. In: Slik Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Fossey SA, Nemthy G, Gibson KD, Scheraga HA (1991): Conformational energy studies of ß-sheets of model silk fibron peptides. I. Sheets of alanine and glycine. Biopolymers 3:1529

    Article  Google Scholar 

  • Fossey S, Gibson KD, Nemethy G, Kaplan DL, Scheraga HA (1996): In preparation

    Google Scholar 

  • Fraser RDB, MacRae TP (1973): Silks. In:Conformation in Fibrous Proteins. New York: Academic Press

    Google Scholar 

  • Fraser RDB, MacRae TP, Stewart FHC, Suzuki E (1965): Poly-L-alanylglycine. J Mol Biol 11:706–712

    Article  PubMed  CAS  Google Scholar 

  • Gage LP, Manning RF (1980a): Internal structure of the silk fibroin gene of Bombyx mori. J Biol Chem 255:9444–9450

    CAS  Google Scholar 

  • Garel JP, Hentzen D, Schlegel M, Dirheimer G (1976): Structural studies on RNA from Bombyx mori. Biochimie 58:1089–1100

    CAS  Google Scholar 

  • Gillespie DB, Viney C, Yager P (1994): Raman spectroscopic analysis of the secondary structure of spider silk fibers. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Goldsmith MR, Shi J (1994): Molecular map for the silkworm: constructing new links between basic and applied research. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Gosline JM, Denny MW, DeMont ME (1984): Spider silk as rubber. Nature 3009:551–552

    Article  Google Scholar 

  • Gosline JM, DeMont ME, Denny MW (1986): The structure and properties of spider silk. Endeavour 10:37–43

    Article  Google Scholar 

  • Hentzen D, Chevallier A, Garel JP (1981): Differential use of iso-accepting tRNASer species in silk glands of Bombyx mori. Nature 290:267–269

    Article  CAS  Google Scholar 

  • Hinman MB, Lewis RV (1992): Isolation of a clone encoding a second dragline silk fibroin, Nephila clavipes dragline silk is a two protein fiber. J Biol Chem 267:19320–19324

    PubMed  CAS  Google Scholar 

  • Hyde N (1984): The queen of textiles. National Georgraphic 165:3–49

    Google Scholar 

  • Ilzuka E (1985a): Silk Thread: mechanism of spinning and its mechanical properties. J Appl Poly Sci Japan 41:173–185

    Google Scholar 

  • Ilzuka E (1985b): Silk: an overview. J Appl Poly Sci Japan 41:163–171

    Google Scholar 

  • Ito T (1978): Silkworm nutrition. In: The Silkworm, Tazima Y, ed. Tokyo: Kodansha

    Google Scholar 

  • Jackson C, O’Brien JP (1995): Molecular weight distribution of Nephila clavipes dragline silk. Macromolecules 28:5975–5977

    Article  CAS  Google Scholar 

  • Kaplan DL, Lombardi SJ, Muller WS, Fossey SA (1991): “Silks”. In: Biomaterials: Novel Materials from Biological Sources Byrom D, ed. New York: Stockton

    Google Scholar 

  • Kaplan DL, Fossey S, Viney C, Muller W (1992a): Self-organization (assembly) in biosynthesis of silk fibers—a hierarchical problem. In: Hierarchically Structured Materials, Aksay IA, Baer E, Sarikaya M, Tirrell DA, eds. Proc Materials Res Soc, Pittsburgh, PA

    Google Scholar 

  • Kaplan DL, Adams WW, Viney C, Farmer B (1994): Silks: Materials Science and Biotechnology. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Kaplan DL, Fossey S, Mello CM, Arcidiacono S, Senecal K, Muller W, Stockwell S, Beckwitt R, Viney C, Kerkam K (1992b): Biosynthesis and processing of silk proteins. Mails Res Soc Bull 10:41–47

    Google Scholar 

  • Kerkam K, Viney C, Kaplan DL, Lombardi SJ (1991): Liquid crystalline characteristics of natural silk secretions. Nature 349:596–598

    Article  CAS  Google Scholar 

  • Laible RC (1980): Fibrous armor. In: Ballistic Materials and Penetration Mechanics, Laible RC, ed. Amsterdam: Elsevier

    Google Scholar 

  • Lewis RV, Colgin M (1995): cDNAs encoding minor ampullate spider silk proteins. European Patent Filing WO 95/25165

    Google Scholar 

  • Lin LH, Edmonds DT, Vollrath F (1995): Structural engineering of an orb-spider’s web. Nature 273:146–148

    Article  Google Scholar 

  • Livengood CD (1990): Silk. In: Poymers-Fibers and Textiles: A Compendium, Kroschowitz JI, ed. New York: Wiley

    Google Scholar 

  • Lizardi PM (1979): Discontinuous translation of silk fibroin in a reticulocyte cell-free system and in intact silk gand cells. Proc Natl Acad Sci USA 76:6211–6215

    Article  PubMed  CAS  Google Scholar 

  • Lock R (1993): Fiber-spinnable solutions of silkworm fibroin. PCT Patent W093/15244

    Google Scholar 

  • Lombardi SJ, Kaplan DL (1990): The amino acid composition of major ampullate gland silk (dragline) of Nephila clavipes (Araneae, Tetrgnathidae). J ArachnoI 18:297–306

    Google Scholar 

  • Lombardi SJ, Kaplan DL (1991): The Nephila clavipes major ampullate gland silk protein, amino acid composition and detection of silk gene-related nucleic acids in the genome. Acta Zool Fennica 190:243

    Google Scholar 

  • Lotz B, Colonna-Cesari F (1979): The chemical structure and crystalline structures of Bombyx mori silk fibroin. Biochimie 61:205–214

    Article  PubMed  CAS  Google Scholar 

  • Lotz B, Keith HD (1971): Crystal structure of poly(L-Ala-Gly) II. J Mol Biol 61:201–215

    Article  PubMed  CAS  Google Scholar 

  • Lucas F, Shaw JTB, Smith SG (1958): In: Advances in Protein Chemistry, Anfinsen CB, Anson ML, Bailey K, Edsall JT, eds. New York: Academic Press

    Google Scholar 

  • Lucas F, Rudall KM (1968): In: Comprehensive Biochemistry: Extracellular and Supporting Structures, Florkin M, Stotz EH, eds. Amsterdam: Elsevier

    Google Scholar 

  • Lucas F, Shaw JTB, Smith SG (1960): Comparative studies of fibroins I. The amino acid composition of various fibroins and its signficance in relation to their crystal structure and taxonomy. J Mol Biol 2:339–349

    Article  PubMed  CAS  Google Scholar 

  • Lucas F, Shaw JTB, Smith SG (1962): Some amino acid sequences in the amorphous fraction of the fibroin of Bombyx mori. Biochem J 83:164–171

    CAS  Google Scholar 

  • Mahoney DV, Vezie DL, Eby RK, Adams WW, Kaplan DL (1994): In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Magoshi J, Magoshi Y, Nakamura S (1994): Mechanism of fiber formation of silkworm. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Magoshi J, Magoshi Y (1977): Physical properties and structure of silk. V. Thermal behavior of silk fibroin in the random-coil conformation. J Polym Sci Japan 15:1675–1683

    CAS  Google Scholar 

  • Magoshi J, Magoshi Y, Nakamura S (1985): Crystallization, liquid crystal, and fiber formation of silk fibroin. J Appl Poly Sci 41:187–204

    CAS  Google Scholar 

  • Manning RF, Gage LP (1978): Physical map of the Bombyx mori DNA containing the gene for silk fibroin. J Biol Chem 253:2044–2052

    PubMed  CAS  Google Scholar 

  • Manning RF, Gage LP (1980): Internal structure of the silk fibroin gene of Bombyx mori. II. Remarkable polymorphism of the organization of crystalline and amorphous coding sequences. J Biol Chem 255:9451–9457

    PubMed  CAS  Google Scholar 

  • Marsh RE, Corey RB, Paulling L (1995): An investigation of the structure of silk fibroin. Biochim Biophys Acta 16:1–34

    Article  Google Scholar 

  • McNamee SG, Ober CK, Jelinski LW, Ray E, Xia Y, Grubb DT (1994): Toward single-fiber diffraction of spider dragline silk from Nephila clavipes. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Mello CM, Senecal K, Yeung B, Vouros P, Kaplan DL (1994): Initial characterization of Nephila clavipes dragline protein. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Minoura N, Tsuada M, Nagura M (1990a): Fine structure and oxygen permeability of silk fibroin membrane treated with methanol. Polymer 31:265–269

    Article  CAS  Google Scholar 

  • Minoura N, Tsukada M, Nagura M (1990b): Physio-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials 11:430–434

    Article  PubMed  CAS  Google Scholar 

  • Mita K, Ichimura S, Zama M, James TC (1988): Specific codon usage pattern and its implications on the secondary structure of silk fibroin mRNA. J Mol Biol 203:917–925

    Article  PubMed  CAS  Google Scholar 

  • Mita K, Ichimura S, James TC (1994): Highly repetitive structure and its organization of silk fibroin gene. J Mol Evol 38:583–592

    Article  PubMed  CAS  Google Scholar 

  • Muller WS, Samuelson LA, Fossey SA, Kaplan DL (1993): Formation and characterization of Langmuir silk films. Langmuir 9:1857–1861

    Article  CAS  Google Scholar 

  • Nakamura S, Magoshi J, Magoshi Y (1994): Thermal properties of silk proteins in silkworms. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Nicholson LK, Asakura T, Demura M, Cross TA (1993): A method for studying the structure of uniaxially aligned biopolymers using solid state 15N-NMR: application to Bombyx mori silk fibroin fibers. Biopolymers 33:847–861

    Article  PubMed  CAS  Google Scholar 

  • Okamoto H, Ishikawa E, Suzuiki Y (1982): Structural analysis of sericin genes. J Biol Chem 257:15192–15199

    PubMed  CAS  Google Scholar 

  • Oshima Y, Suzuki Y (1977): Cloning of the silk fibroin genes and its flanking sequences. Proc Natl Acad Sci USA 74:5363–5367

    Article  Google Scholar 

  • Pachter R, Crane RL, Adams WW (1994): Approaches to modeling and property predictions of model peptides. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Prince JT, McGrath KP, DiGirolamo CM, Kaplan DL (1995): Construction, cloning and expression of synthetic spider dragline silk DNA. Biochemistry 34:10879–10885

    Article  PubMed  CAS  Google Scholar 

  • Robson RM (1985): Silk composition, structure and properties. In: Fiber Chemistry Handbook of Science and Technology, Vol. IV, Lewin M, Pearce E, eds. New York: Marcel Dekker

    Google Scholar 

  • Selden PA (1989): Orb-weaving spiders in the early Cretaceous. Nature 340:711–712

    Article  Google Scholar 

  • Senecal K, Mello C, Kaplan DL (1996): In preparation

    Google Scholar 

  • Shear WA, Palmer J A, Coddington J A, Bonamo PM (1989): A Devonian spinneret: early evidence of spiders and silk use. Science 246:479–481

    Article  PubMed  CAS  Google Scholar 

  • Simmons A, Ray E, Jelinski LW (1994): Solid state 13C-NMR of Nephila clavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules 27:5235–5237

    Article  CAS  Google Scholar 

  • Simmons AH, Michal CA, Jelinski LW (1996): Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271:84–87

    Article  PubMed  CAS  Google Scholar 

  • Sprague KU (1975): The Bombyx mori silk proteins: characterization of large polypeptides. Biochemistry 14:925–931

    Article  PubMed  CAS  Google Scholar 

  • Sprague KU, Roth MB, Manning RF, Gage LP (1979): Alleles of the fibroin gene coding for proteins of different lengths. Cell 17:407–413

    Article  PubMed  CAS  Google Scholar 

  • Strydom DJ, Haylett T, Stead RH (1977): The amino-terminal sequence of silk fibroin peptide Cp—a reinvestigation. Biochem Biophys Res Commun 79:932–938

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Brown DD (1972): Isolation and identification of the messenger RNA for silk fibroin from Bombyx mori. J Mol Biol 63:409–429

    CAS  Google Scholar 

  • Suzuki Y, Oshima Y (1977): Isolation and characterization of the silk fibrion gene with its flanking sequences. Cold Spring Harbor Symp Quant Biol 42:947–957

    Article  Google Scholar 

  • Suzuki Y, Takiya S, Kuzuki T, Hui C-C, Matsuno K, Fukuta M, Nagata T, Ueono K (1990): Developmental regulation of silk gene expression in Bombyx mori. In: Molecular Insect Science, Gagedorn HH, ed. New York: Plenum Press

    Google Scholar 

  • Suzuki Y, Gage LP, Brown DD (1972): The genes for silk fibroin in Bombyx mori. J Mol Biol 70:637–649

    CAS  Google Scholar 

  • Takashasi Y (1994): Crystal structure of silk of Bombyx mori. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Tashiro Y, Morimoto T, Matsura S, Nagata S (1968): Studies on the posterior silk gland of the silkworm, Bombyx mori. J Cell Biol 38:574–588

    CAS  Google Scholar 

  • Termonia Y (1994): Molecular modeling of spider silk elasticity. Macromolecules 27:7378–7381

    Article  CAS  Google Scholar 

  • Thiel B, Kunkel D, Guess K, Viney C (1994): Composite microstructure of spider (Nephila clavipes) dragline. Mat Res Soc Symp Proc 330:21–30

    Article  CAS  Google Scholar 

  • Tillinghast EK, Townley MA (1994): Silk glands of Araneid spiders: selected morphological and physiological aspects. In: Silk Polymers:Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Tillinghast EK, Chase SF, Townley MA (1984): Water extraction by the major ampullate duct during silk formation in the spider Argiope aurantia Lucas. J Insect Physiol 30:591–596

    Article  CAS  Google Scholar 

  • Townley MA, Tillinghast EK (1988): Orb web recycling in Araneus cavaticus (Araneae, Araneidae) with an emphasis on the adhesive spiral component, gabamide. J Arachnol 16:303–319

    Google Scholar 

  • Tsuijimoto Y, Suzuki Y (1979a): Structural analysis of the fibroin gene at the 5’ end and its surrounding regions. Cell 16:425–436

    Article  Google Scholar 

  • Tsuijimoto Y, Suzuki Y (1979b): The DNA sequence of Bombyx mori fibroin gene including the 5’ flanking, mRNA coding, entire intervening and fibroin protein coding regions. Cell 18:591–600

    Article  Google Scholar 

  • Valluzzi R, Gido SP, Zhang W, Muller WS, Kaplan DL (1996): A trigonal crystal structure of Bombyx mori silk incorporating a threefold helical chain conformation found at the air-water interface. Macromolecules: In press

    Google Scholar 

  • Viney C, Huber AE, Dunaway DL, Kerkam K, Case ST (1994): Optical characterization of silk secretions and fibers. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Vollrath F (1994): General properties of some spider silks. In: Silk Polymers: Materials Science and Biotechnology, Kaplan DL, Adams WW, Farmer B, Viney C, eds. Washington, DC: American Chemical Society Symposium Series 544

    Google Scholar 

  • Vollrath F, Fairbrother WJ, Williams RJP, Tillinghast EK, Bernstein DT, Gallagher KS, Townley MA (1990): Compounds in the droplets of the orb spider’s viscid spiral. Nature 345:526–528

    Article  CAS  Google Scholar 

  • Warwicker JO (1960): Comparative studies of fibroins. II. The cystal structures of various fibroins. J Mol Biol 2:350–362

    Article  PubMed  CAS  Google Scholar 

  • Work RW (1977): Dimension, birefringence and force-elongation behavior of major and minor ampullate silk fibers from orb-web spinning spiders—the effects of wetting on their properties. Text Res J 47:650–662

    Google Scholar 

  • Work RW (1981): A comparative study of the supercontraction of major ampullate silk fibers of orb-web-building spiders (Araneae). J Arachnol 9:299–308

    Google Scholar 

  • Work RW (1984): Duality in major ampullate silk and precursive material from orb-web-building spiders (Araneae). Trans American Microscopy Soc 103:113–121

    Article  Google Scholar 

  • Work RW, Emerson PD (1982): An apparatus and technique for the forcible silking of spiders. J Arachnol 10:1–10

    Google Scholar 

  • Xu M, Lewis RV (1990): Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci USA 87:7120–7124

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Kikuchi Y, Takagai T, Kikuchi A, Oyama F, Shimura K, Mizuno S (1989): Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. J Mol Biol 210:127–139

    Article  PubMed  CAS  Google Scholar 

  • Yoshimizu H, Asakura T (1990): Preparation and characterization of silk fibroin powder and its application to enzyme immobilization. J Appl Poly Sci 40:127–134

    Article  CAS  Google Scholar 

  • Zemlin JC (1968): A study of the mechanical behavior of spider silks. Report 69–29-CM (AD684333) U.S. Army Natick Laboratories, Natick, MA

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser boston

About this chapter

Cite this chapter

Kaplan, D.L., Mello, C.M., Arcidiacono, S., Fossey, S., Senecal, K., Muller, W. (1997). Silk. In: McGrath, K., Kaplan, D. (eds) Protein-Based Materials. Bioengineering of Materials. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4094-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4094-5_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8649-3

  • Online ISBN: 978-1-4612-4094-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics