Skip to main content

Bounds on complete exponential sums

  • Chapter

Part of the book series: Progress in Mathematics ((PM,volume 138))

Abstract

We give a brief survey on complete exponential sums of the type S(g) = Σx e p (g(x)), with g a polynomial in n variables over the finite field 픽 p , and prove several new results including the following. If g is non-composite, that is, not of the type g(x) = f(h(x)) with deg f ≥ 2, and pc 1(d, n)then the weights of the characteristic values of S(g) are all ≤ 2n - 2. For homogeneous g we can take c 1(d,n) = 2. A partial converse is also given. Next, if g is homogeneous, absolutely irreducible of degree d, and has a singular locus of dimension in ℙn-l, then the characteristic values of S(g)have weight ≤ n + + 1, and so \(\left| {S(g)} \right|(4d + 5)^n p^{\frac{{n + l + 1}}{2}}\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A. Adolphson and S. Sperber, Exponential sums and Newton polyhedra, cohomology and estimates, Ann. Math. 130 (1989), 367–406.

    Article  MathSciNet  MATH  Google Scholar 

  • B.J. Birch, Forms in many variables, Proc. Roy. Soc. (A) 265 (1962), 245–263.

    Article  MathSciNet  MATH  Google Scholar 

  • E. Bombieri, On exponential sums in finite fields II, lnventiones Math. 47 (1978), 29–39.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Capelli, Sulla riduttibilità delle equazioni algebriche, Nota secunda, ibidem (3) 4 (1898), 84–90.

    Google Scholar 

  • J.H.H. Chalk and K.S. Williams, The distribution of solutions of congruences, Mathematika 12 (1965), 176–192.

    Article  MathSciNet  MATH  Google Scholar 

  • T. Cochrane, Exponential Sums and the Distribution of Solutions of Congruences, lnst. of Math., Academia Sinica, Taipei, 1994.

    Google Scholar 

  • H. Davenport and D.J. Lewis, Exponential sums in many variables, Amer. J. Math. 84 (1962), 649–665.

    Article  MathSciNet  MATH  Google Scholar 

  • P. Deligne, Cohomologie Etale (SGA 4½), Springer Lecture Notes in Math. 569, Springer-Verlag, 1977.

    Google Scholar 

  • P. Deligne, La conjecture de Weil II, Publ. Math. LH.E.S. 52 (1980), 137–252.

    MathSciNet  MATH  Google Scholar 

  • J. Denef and F. Loeser, Weights of exponential sums, intersection cohomology and Newton polyhedra, Invent. math. 106 (1991), 275–294.

    Article  MathSciNet  MATH  Google Scholar 

  • C. Hooley, On exponential sums and certain of their applications, Journées Arith. 1980, London Math. Soc. Lec. Note Ser. 56, J.V. Armitage (ed.), Cambridge Univ. Press, 1982, pp. 92–122.

    Google Scholar 

  • C. Hooley, On the number of points on a complete intersection over a finite field, J. of Number Theory 38 (1991), 338–358.

    Article  MathSciNet  MATH  Google Scholar 

  • N.M. Katz, Sommes exponentielles, Astérisque 79 (1980).

    Google Scholar 

  • S. Lang and A. Weil, Number of points on varieties in finite fields, Amer. J. Math. 76 (1954), 819–827.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Rédei, Algebra, I Teil, Akademische Verlaggesellschaft, Leipzig, 1959.

    Google Scholar 

  • W. Ruppert, Reduzibilität ebener kurven, J. Reine Angew. Math. 369 (1986), 167–191.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Schinzel, Selected Topics on Polynomials, The University of Michigan Press, Ann Arbor, 1982.

    MATH  Google Scholar 

  • W.M. Schmidt, Bounds for exponential sums, Acta Arithmetica 44 (1984), 282–297.

    Google Scholar 

  • I.R. Shafarevich, Basic Algebraic Geometry, 1, Second, Revised and Expanded Edition, Springer-Verlag, New York, 1994.

    Book  Google Scholar 

  • A.N. Skorobogatov, Exponential sums, the geometry of hyperplane sections, and some diophantine problems, Israel J. of Math. 80 (1992), 359–379.

    Article  MathSciNet  MATH  Google Scholar 

  • Y. Stein, The total reducibility order of a polynomial in two variables, Israel J. Math. 68 (1989), no. 1, 109–122.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204–207.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Cochrane, T. (1996). Bounds on complete exponential sums. In: Berndt, B.C., Diamond, H.G., Hildebrand, A.J. (eds) Analytic Number Theory. Progress in Mathematics, vol 138. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4086-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4086-0_11

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8645-5

  • Online ISBN: 978-1-4612-4086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics