A Unified Method for Solving Linear and Nonlinear Evolution Equations and an Application to Integrable Surfaces

  • A. S. Fokas
  • I. M. Gelfand
Conference paper

Abstract

We call a nonlinear equation integrable iff it admits a Lax pair formulation [1], i.e. iff it can be written as the compatibility condition of two linear equations. One of these equations involves derivatives with respect to space variables only. This equation can be regarded as a linear eigenvalue equation; its spectral analysis gives rise to a nonlinear Fourier transform. The other linear equation defining the Lax pair, simply determines the evolution of the nonlinear Fourier data. The method of using a nonlinear Fourier transform to solve the Cauchy problem for decaying initial data is called the inverse spectral method [2].

Keywords

Soliton Como cosB 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.D. Lax, Comm, Pure Appl. Math., 21, 467 (1968).MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Phys. Rev. Lett., 19, 1095 (1967)MATHCrossRefGoogle Scholar
  3. Comm. Pure Appl. Math., 27, 97 (1974).MathSciNetMATHCrossRefGoogle Scholar
  4. For recent developments see A.S. Fokas and V.E. Zakharov, Eds, Important Developments in Soliton Theory, Springer-Verlag, (1993).Google Scholar
  5. [3]
    M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur, Phys. Lett. 30, 1262 (1973a)MathSciNetCrossRefGoogle Scholar
  6. M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur, Phys. Lett. 31, 125 (1973b).MathSciNetCrossRefGoogle Scholar
  7. [4]
    A.S. Fokas and I.M. Gelfand, Lett. Math. Phys. 32, 189 - 210 (1994).MathSciNetMATHCrossRefGoogle Scholar
  8. [5]
    A.S. Fokas and A.R. Its, Phys, Rev. Lett. 68, 3117–3120 (1992)MathSciNetMATHCrossRefGoogle Scholar
  9. [6]
    A.S. Fokas and A. Its, An Initial-Boundary Value Problem for the KdV Equation, to appear.Google Scholar
  10. [7]
    A.S. Fokas and I.M. Gelfand, Surfaces on Lie Groups, on Lie Algebras, and their Integrability, Comm. Math. Phys.Google Scholar
  11. [8]
    E. Cartan, La Theorie des Groups Finis et Continus et la Geometrie Différentielle Traitées par la Méthode du Repère Hobile. Éditions Jaegues Gabay, 1992.Google Scholar
  12. [9]
    P. Griffiths, On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry. Duke Math. J. 1974.Google Scholar
  13. [10]
    A. Sym, Soliton Surfaces and their Applications, Lect. Notes Phys., vol 239, pp 154 - 231, Springer Verlag 1985.Google Scholar
  14. [11]
    A.I. Bobenko, Surfaces in Terms of 2 x 2 Matrices, in Harmonic Maps and Integrable Systems, eds A. Fordy and J.C. Wood, Vieweg, (1994).Google Scholar
  15. [12]
    V.E. Zakharov and A.B. Shabat, Sov. Phys. JETP, 34, 62 (1972).MathSciNetGoogle Scholar
  16. [13]
    X. Zhou, SIAM J. Math. Anal., 20, 966–980 (1989).MATHGoogle Scholar
  17. [14]
    A.S. Fokas and L.Y. Sung., Inverse Problems, 8, 673–708 (1992).MathSciNetMATHCrossRefGoogle Scholar
  18. [15]
    A.S. Fokas and V. Zakharov, J. of Nonlinear Science, 2, 109–134 (1992).MathSciNetMATHCrossRefGoogle Scholar
  19. [16]
    A.S. Fokas, Phys, Rev. Lett., 51, 3 (1983).MathSciNetCrossRefGoogle Scholar
  20. [17]
    R. Beals and R.R. Coifman, Comm. Pure Appl. Math., 37, 39 (1984).MathSciNetMATHCrossRefGoogle Scholar
  21. [18]
    R. Beals and R.R. Coifman, Proc. Symp. Pure Math., 43, 45 (1985).MathSciNetGoogle Scholar
  22. [19]
    R. Beals and R.R. Coifman, The Spectral Problem for the Davey- Stewartson and Ishimori Hierarchies, Proc. Conf. on Nonlinear Evolution Equations: Integrability and Spectral Methods, Como, University of Manchester.Google Scholar

Copyright information

© Birkhäuser Boston 1996

Authors and Affiliations

  • A. S. Fokas
    • 1
  • I. M. Gelfand
    • 2
  1. 1.Department of MathematicsImperial CollegeLondonUK
  2. 2.Dept. of Math.Rutgers UniversityNew BrunswickUSA

Personalised recommendations