Figures from Figures Doing Arithmetic and Algebra by Geometry

  • John H. Conway
  • Richard K. Guy

Abstract

We can learn a good deal of arithmetic just by writing the numbers in rows of 1, 2, 3, . . . , as in Figure 2.1. The left-hand column in each section is the list of multiples of the number of entries in each row.

Keywords

Amid Hexagonal SteIn Pyramid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Math. Annalen, 99(1928): 118–133.MathSciNetCrossRefMATHGoogle Scholar
  2. Martin Gardner. Second Book of Mathematical Puzzles and Diversions. W. H. Freeman, New York, 1961; Chapter 4, Digital Roots.Google Scholar
  3. Martin Gardner. Time Travel and Other Mathematical Bewilderments. W. H. Freeman, New York, 1988; Chapter 2, Hexes and Stars.MATHGoogle Scholar
  4. Martin Gardner. Penrose Tiles to Trapdoor Ciphers. W. H. Freeman, New York, 1989; Chapter 17, Ramsey Theory.Google Scholar
  5. P. Goodwin. A polyhedral series or two. Math. Gaz., 69(1985): 191–197.CrossRefGoogle Scholar
  6. Harvey Hindin. Stars, hexes, triangular numbers and Pythagorean triples. J. Recreational Math., 16(1983–84): 191–193.MathSciNetGoogle Scholar
  7. Edward Kasner and James Newman. Mathematics and the Imagination. G. Bell & Sons, London, 1949, p. 23.MATHGoogle Scholar
  8. Donald E. Knuth. Mathematics and computer science: Coping with finiteness. Science, (1976): 12–17.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • John H. Conway
  • Richard K. Guy

There are no affiliations available

Personalised recommendations