Skip to main content

Models of External- and Middle-Ear Function

  • Chapter
Auditory Computation

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 6))

Abstract

The primary function of the external and middle ear is to gather sound energy and conduct it to the inner ear. How this goal is achieved depends almost entirely on the passive acoustical and mechanical properties of the ear’s most peripheral structures (Fletcher 1992; Rosowski 1994). (There are active components within the middle ear, i.e., the middle-ear muscles, but these structures principally work by modulating the passive properties of the middle ear [Møller 1983; Pang and Peake 1985, 1986].) Comprehension of the function of each of the ear’s peripheral components necessitates a physical description of the relevant acoustical and mechanical properties of the components as well as quantitative schemata for how the components interact. Such schemata serve two purposes: (1) they crystallize our understanding of how the structures work and provide testable hypotheses for further refinements, and (2) they supply approximations of external- and middle-ear function which can act as prefilters in studies of the inner ear and central auditory nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin LM, Johnstone BM (1972) Middle-ear function in a monotreme: the echidna (Tachyglossus aculeatus). J Exp Biol 180:245–250.

    CAS  Google Scholar 

  • Allen J (1986) Measurements of eardrum acoustic impedance. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanism. New York: Springer-Verlag, pp. 44–51.

    Google Scholar 

  • Ballentine S (1928) Effect of diffraction around the microphone in sound measurements. Phys Rev 32:988–992.

    Article  Google Scholar 

  • Batteau DW (1967) The role of the pinna in human localization. Proc R Soc Lond B 168:158–180.

    Article  PubMed  CAS  Google Scholar 

  • Benade AH (1968) On the propagation of sound waves in a cylindrical conduit. J Acoust Soc Am 44:616–623.

    Article  Google Scholar 

  • Benade AH (1988) Equivalent circuits for conical waveguides. J Acoust Soc Am 83:1764–1769.

    Article  Google Scholar 

  • Beranek LL (1986) Acoustics. New York: McGraw-Hill.

    Google Scholar 

  • Blauert J (1983) Spatial Hearing. Cambridge: MIT Press.

    Google Scholar 

  • Butler RA, Belendiuk K (1977) Spectral cues utilized in the localization of sound in the median sagittal plane. J Acoust Soc Am 61:1264–1269.

    Article  PubMed  CAS  Google Scholar 

  • Buunen TJF, Vlaming MSMG (1981) Laser-Doppler velocity meter applied to tympanic membrane vibrations in cat. J Acoust Soc Am 69:744–750.

    Article  PubMed  CAS  Google Scholar 

  • Calford MB, Pettigrew JD (1984) Frequency dependence of directional amplification at the cat’s pinna. Hear Res 14:13–19.

    Article  PubMed  CAS  Google Scholar 

  • Chan JCK, Geisler CD (1990) Estimation of eardrum acoustic pressure and of ear canal length from remote points in the canal. J Acoust Soc Am 87:1237–1247.

    Article  PubMed  CAS  Google Scholar 

  • Coles RG, Guppy A (1986) Biophysical aspects of directional hearing in the Tammar wallaby, Maeropus eugenii. J Exp Biol 121:371–394.

    Google Scholar 

  • Cooper NP, Rhode WS (1992) Basilar membrane mechanics in the hook region of cat and guinea-pig cochleae: sharp tuning in the absence of baseline position shifts. Hear Res 63:163–190.

    Article  PubMed  CAS  Google Scholar 

  • Dallos P (1970) Low-frequency auditory characteristics. J Acoust Soc Am 48: 489–499.

    Article  PubMed  CAS  Google Scholar 

  • Dallos P (1973) The Auditory Periphery. New York: Academic Press.

    Google Scholar 

  • Daniels FB (1974) Acoustical impedance of enclosures. J Acoust Soc Am 19: 569–572.

    Article  Google Scholar 

  • Décory L (1989) Origine des différences interspécifiques de susceptibilité an bruit. Thèse de Doctorat de l’Université de Bordeaux, France.

    Google Scholar 

  • Decraemer WF, Khanna SM (1994) Modelling the malleus vibration as a rigid body motion with one rotational and one translational degree of freedom. Hear Res 72:1–18.

    Article  PubMed  CAS  Google Scholar 

  • Decraemer WF, Khanna SM, Funneil WRJ (1989) Interferometric measurement of the amplitude and phase of tympanic membrane vibrations in cat. Hear Res 38:1–18.

    Article  PubMed  CAS  Google Scholar 

  • Decraemer WF, Khanna SM, Funneil WRJ (1990) Heterodyne interferometer measurements of the frequency response on the manubrium tip in cat. Hear Res 47:205–218.

    Article  PubMed  CAS  Google Scholar 

  • Decraemer WF, Khanna SM, Funneil WRJ (1991) Malleus vibration mode changes with frequency. Hear Res 54:305–318.

    Article  PubMed  CAS  Google Scholar 

  • Desoer CA, Kuh ES (1969) Basic Circuit Theory. New York: McGraw-Hill.

    Google Scholar 

  • Donahue KM (1989) Human middle-ear motion: models and measurements. M.S. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Donahue KM, Rosowski JJ, Peake WT (1991) Can the motion of the human malleus be described as pure rotation? In: Abstracts of the 14th Midwinter Meeting of the Association for Research in Otolaryngology, p. 52.

    Google Scholar 

  • Egolf DP (1977) Mathematical modeling of a probe-tube microphone. J Acoust Soc Am 61:200–205.

    Article  Google Scholar 

  • Egolf DP (1980) Techniques for modeling the hearing aid receiver and associated tubing. In: Studebaker GA, Hochberg I (eds) Acoustical Factors Affecting Hearing Aid Performance. Baltimore: University Park Press, pp. 297–319.

    Google Scholar 

  • Esser MHM (1947) The mechanics of the middle ear: II. The drum. Bull Math Biophys 9:75–91.

    Article  PubMed  CAS  Google Scholar 

  • Fleischer G (1973) Studien am Skelett des Gehörorgans der Säugetiere, einschliesslich des Menschen. Säugetierkd Mitt (München) 21:131–239.

    Google Scholar 

  • Fleischer G (1978) Evolutionary principles of the mammalian middle ear. Adv Anat Embryol Cell Biol 55:3–69.

    PubMed  CAS  Google Scholar 

  • Fletcher NH (1992) Acoustic Systems in Biology. Oxford: Oxford University Press.

    Google Scholar 

  • Fletcher NH, Thwaites S (1979) Physical models for the analysis of acoustical systems in biology. Q Rev Biophys 12:25–65.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher NH, Thwaites S (1988) Obliquely truncated horns: idealized models for vertebrate pinnae. Acustica 65:195–204.

    Google Scholar 

  • Fukudome K (1980) Equalization for the dummy-head-headphone system capable of reproducing true directional information. J Acoust Soc Jpn (E) 1:59–67.

    Google Scholar 

  • Fukudome K, Yamada M (1989) Influence of the shape and size of a dummyhead upon Thévenin acoustic impedance and Thévenin pressure. J Acoust Soc Jpn (E) 10:11–22.

    Google Scholar 

  • Funnell WR (1983) On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum. J Acoust Soc Am 73:1657–1661.

    Article  PubMed  CAS  Google Scholar 

  • Funnell WR, Laszlo CA (1977) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461–1467.

    Article  Google Scholar 

  • Funnell WR, Decraemer WF, Khanna SM (1987) On the damped frequency response of a finite-element model of the cat eardrum. J Acoust Soc Am 81:1851–1859.

    Article  PubMed  CAS  Google Scholar 

  • Funnell WR, Decraemer WF, Khanna SM (1992) On the degree of rigidity of the manubrium in a finite-element model of the cat eardrum. J Acoust Soc Am 91:2082–2090.

    Article  PubMed  CAS  Google Scholar 

  • Guinan JJ Jr, Peake WT (1967) Middle-ear characteristics of anesthetized cats. J Acoust Soc Am 41:1237–1261.

    Article  PubMed  Google Scholar 

  • Gyo K, Aritomo H, Goode RL (1987) Measurement of the ossicular vibration ratio in human temporal bones by use of a video measuring system. Acta Otolaryngol 103:87–95.

    Article  PubMed  CAS  Google Scholar 

  • Henson OW Jr (1974) Comparative anatomy of the middle ear. In: Kiedel WD, Neff WD (eds) Handbook of Sensory Physiology: The Auditory System, Vol. 1. New York: Springer-Verlag, pp. 39–110.

    Google Scholar 

  • Hudde H, Schröter J (1980) The equalization of artificial heads without exact replication of eardrum impedance. Acoustical 44:301–307.

    Google Scholar 

  • Hüttenbrink KB (1988) The mechanics of the middle-ear at static air pressures. Acta Otolaryngol Suppl 451:1–35.

    Article  PubMed  Google Scholar 

  • Keefe DH, Bulen JC, Campbell SL, Burns EM (1994) Pressure transfer function and absorption cross section from the diffuse field to the human infant ear canal. J Acoust Soc Am 95:355–371.

    Article  PubMed  CAS  Google Scholar 

  • Khanna SM, Stinson MR (1985) Specification of the acoustical input to the ear at high frequencies. J Acoust Soc Am 77:577–589.

    Article  PubMed  CAS  Google Scholar 

  • Khanna SM, Tonndorf J (1969) Middle ear power transfer. Arch Klin Exp Ohren-Nasen Kehlkopfheilkd 193:78–88.

    Article  PubMed  CAS  Google Scholar 

  • Khanna SM, Tonndorf J (1972) Tympanic membrane vibrations in cats studied by time-average holography. J Acoust Soc Am 51:1904–1920.

    Article  PubMed  CAS  Google Scholar 

  • Khanna SM, Tonndorf J (1978) Physical and physiological principles controlling auditory sensitivity in primates. In: Noback R (ed) Neurobiology of Primates. New York: Plenum Press, pp. 23–52.

    Google Scholar 

  • Kinsler LE, Frey AR (1962) Fundamentals of Acoustics. New York: Wiley.

    Google Scholar 

  • Kinsler LE, Frey AR, Coppens AB, Sanders JV (1982) Fundamentals of Acoustics. New York: Wiley.

    Google Scholar 

  • Kohllöffel LUE (1984) Notes on the comparative mechanics of hearing. III. On Shrapnell’s membrane. Hear Res 13:83–88.

    Article  PubMed  Google Scholar 

  • Kringlebotn M (1988) Network model for the human middle ear. Scand Audiol 17:75–85.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn GF (1977) Model for the interaural time differences in the azimuthal plane. J Acoust Soc Am 62:157–167.

    Article  Google Scholar 

  • Kuhn GF (1979) The pressure transformation from a diffuse sound field to the external ear and to the body and head surface. J Acoust Soc Am 65:991–1000.

    Article  Google Scholar 

  • Kuhn GF (1987) Physical acoustics and measurements pertaining to directional hearing. In: Yost WA, Gourevitch G (eds) Directional Hearing. New York: Springer-Verlag, pp. 3–25.

    Google Scholar 

  • Lynch TJ III (1981) Signal processing by the cat middle ear: admittance and transmission, measurements and models. Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Lynch TJ III, Nedzelnitsky V, Peake WT (1982) Input impedance of the cochlea in cat. J Acoust Soc Am 72:108–130.

    Article  PubMed  Google Scholar 

  • Lynch TJ III, Peake WT, Rosowski JJ (1994) Measurements of the acoustic input impedance of cat ears: 10Hz-22kHz. J Acoust Soc Am 96:2184–2209.

    Article  PubMed  Google Scholar 

  • Malecki I (1969) Physical Foundations of Technical Acoustics. Oxford: Pergamon Press.

    Google Scholar 

  • Manley GA, Johnstone BM (1974) Middle-ear function in the guinea pig. J Acoust Soc Am 56:571–576.

    Article  PubMed  CAS  Google Scholar 

  • Margolis RH, Smith P (1977) Tympanometric asymmetry. J Speech Hear Res 20:437–466.

    PubMed  CAS  Google Scholar 

  • Matthews JW (1983) Modeling reverse middle ear transmission of acoustic distortion signals. In: deBoer E, Viergever MA (eds) Mechanics of Hearing. Delft: Delft University Press, pp. 11–18.

    Google Scholar 

  • McElveen JT, Goode RL, Miller C, Falk SA (1982) Effect of mastoid cavity modification on middle ear sound transmission. Ann Otol Rhinol Laryngol 91:526–532.

    PubMed  CAS  Google Scholar 

  • Merchant SN, Ravicz ME, Rosowski JJ (1992) The acoustic input impedance of the stapes and cochlea in human temporal bones. In: Abstracts of the 15th Midwinter Meeting of the Association for Research in Otolaryngology, p. 98.

    Google Scholar 

  • Michelsen A (1992) Hearing and sound communication in small animals: evolutionary adaptations to the laws of physics. In: Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 61–77.

    Google Scholar 

  • Middlebrooks JC, Makous JC, Green DM (1989) Directional sensitivity of sound-pressure levels in the human ear canal. J Acoust Soc Am 86:89–108.

    Article  PubMed  CAS  Google Scholar 

  • Møller AR (1965) Experimental study of the acoustic impedance of the middle ear and its transmission properties. Acta Otolaryngol 60:129–149.

    Article  PubMed  Google Scholar 

  • Møller AR (1983) Auditory Physiology. New York: Academic Press.

    Google Scholar 

  • Musicant AD, Chan JCK, Hind JE (1990) Direction-dependent spectral properties of cat external ear: new data and cross-species somparisons. J Acoust Soc Am 87:757–781.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Aritomo H, Goode RL (1992) Measurements of human cochlear impedance. In: Yanagihara N, Suzuki JI (eds) Transplants and Implants in Otology II. New York: Kugler, pp. 227–230.

    Google Scholar 

  • Nedzelnitsky V (1980) Sound pressures in the basal turn of the cat cochlea. J Acoust Soc Am 68:1676–1689.

    Article  PubMed  CAS  Google Scholar 

  • Onchi Y (1961) Mechanism of the middle ear. J Acoust Soc Am 33:794–805.

    Article  Google Scholar 

  • Pang XD, Peake WT (1985) A model for changes in middle-ear transmission by stapedius-muscle contraction. J Acoust Soc Am 78:S13.

    Article  Google Scholar 

  • Pang XD, Peake WT (1986) How do contractions of the stapedius muscle alter the acoustic properties of the middle ear? In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. New York: Springer-Verlag, pp. 36–43.

    Google Scholar 

  • Peake WT, Guinan JJ Jr (1967) Circuit model for the cat’s middle ear. MIT Q Prog Rep 84:320–326.

    Google Scholar 

  • Peake WT, Rosowski JJ, Lynch TJ III (1992) Middle-ear transmission: acoustic vs. ossicular coupling in cat and human. Hear Res 57:245–268.

    Article  PubMed  CAS  Google Scholar 

  • Price GR, Kalb JT (1991) Insight into hazard from intense impulses from a mathematical model of the ear. J Acoust Soc Am 90:219–227.

    Article  PubMed  CAS  Google Scholar 

  • Puria S, Allen JB (1991) A parametric study of cochlear input impedance. J Acoust Soc Am 89:287–309.

    Article  PubMed  CAS  Google Scholar 

  • Rabbitt RD (1988) High-frequency plane waves in the ear canal: application of a simple asymptotic theory. J Acoust Soc Am 84:2070–2080.

    Article  PubMed  CAS  Google Scholar 

  • Rabbitt RD, Holmes MH (1986) A fibrous dynamic continuum model of the tympanic membrane. J Acoust Soc Am 80:1716–1728.

    Article  PubMed  CAS  Google Scholar 

  • Rabbitt RD, Holmes MH (1988) Three-demensional acoustic waves in the car canal and their interaction with the tympanic membrane. J Acoust Soc Am 83:1064–1080.

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz WM (1977) Acoustic-Reflex Effects on the Input Admittance and Transfer Characteristics of the Human Middle Ear. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge MA.

    Google Scholar 

  • Rabinowitz WM (1981) Measurement of the acoustic input admittance of the human ear. J Acoust Soc Am 70:1025–1035.

    Article  PubMed  CAS  Google Scholar 

  • Rhode WS (1978) Some observations on cochlear mechanics. J Acoust Soc Am 64:158–176.

    Article  PubMed  CAS  Google Scholar 

  • Ravicz ME, Rosowski JJ, Voigt HF (1992) Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguicidatus. I. Middle-ear input impedance. J Acoust Soc Am 92:157–177.

    Article  PubMed  CAS  Google Scholar 

  • Rice JJ, May BJ, Spirou GA, Young ED (1992) Pinna-based spectral cues for sound localization in cat. Hear Res 58:132–152.

    Article  PubMed  CAS  Google Scholar 

  • Rosowski JJ (1991a) The effects of external- and middle-ear filtering on auditory threshold and noise-induced hearing loss. J Acoust Soc Am 90:124–135.

    Article  PubMed  CAS  Google Scholar 

  • Rosowski JJ (1991b) Erratum: “The effects of external- and middle-ear filtering on auditory threshold and noise-induced hearing loss.” J Acoust Soc Am 90:3373.

    Article  Google Scholar 

  • Rosowski JJ (1992) Hearing in transitional mammals: predictions from the middle-ear anatomy and hearing capabilities of extant mammals. In: Webster DB, Popper AN, Fay RR (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 625–631.

    Google Scholar 

  • Rosowski JJ (1994) The external and middle ear. In: Popper AN, Fay RR (eds) Springer Handbook of Auditory Research, Vol. IV, Comparative Mammalian Hearing. New York: Springer-Verlag, pp. 172–247.

    Google Scholar 

  • Rosowski JJ, Graybeal A (1991) What did Morganucodon hear? Zool J Linn Soc 101:131–168.

    Article  Google Scholar 

  • Rosowski JJ, Garney LH, Peake WT (1988) The radiation impedance of the external ear of cat: measurements and applications. J Acoust Soc Am 84: 1695–1708.

    Article  PubMed  CAS  Google Scholar 

  • Rosowski JJ, Carney LH, Lynch TJ III, Peake WT (1986) The effectiveness of the external and middle ears in coupling acoustic power into the cochlea. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. New York: Springer-Verlag, pp. 3–12.

    Google Scholar 

  • Rosowski JJ, Peake WT, Lynch TJ III, Weiss TF, Leong R (1985) A model for signal transmission in an ear having hair cells with free-standing stereocilia. II. Macromechanical stage. Hear Res 20:139–155.

    Article  PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC, Robles L, Shivapuja BG (1990) Middle ear response in the chinchilla and its relationship to mechanics at the base of the cochlea. J Acoust Soc Am 87:1612–1629.

    Article  PubMed  CAS  Google Scholar 

  • Searle CL, Braida LD, Cuddy DR, Davis MF (1975) Binaural pinna disparity: another localization cue. J Acoust Soc Am 57:448–455.

    Article  PubMed  CAS  Google Scholar 

  • Shaw EAG (1974a) The external ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol. 1, Auditory System. New York: Springer-Verlag, pp. 455–490.

    Google Scholar 

  • Shaw EAG (1974b) Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. J Acoust Soc Am 56:1848–1860.

    Article  PubMed  CAS  Google Scholar 

  • Shaw EAG (1982) External ear response and sound localization. In: Gatehouse R (ed) Localization of Sound: Theory and Application. Groton: Amphora Press, pp. 30–41.

    Google Scholar 

  • Shaw EAG (1988) Diffuse field response, receiver impedance and the acoustical reciprocity principle. J Acoust Soc Am 84:2284–2287.

    Article  Google Scholar 

  • Shaw EAG, Stinson MR (1983) The human external and middle ear: models and concepts. In: deBoer E, Viergever MA (eds) Mechanics of Hearing. Delft: Delft University Press, pp. 3–10.

    Google Scholar 

  • Shera C, Zweig G (1991) Phenomenological characterization of eardrum transduction. J Acoust Soc Am 90:235–262.

    Article  Google Scholar 

  • Shera C, Zweig G (1992a) Middle-ear phenomenology: the view from the three windows. J Acoust Soc Am 92:1356–1369.

    Article  PubMed  CAS  Google Scholar 

  • Shera C, Zweig G (1992b) Analyzing reverse middle-ear transmission: noninvasive Gedankenexperiments. J Acoust Soc Am 92:1371–1381.

    Article  PubMed  CAS  Google Scholar 

  • Shera C, Zweig G (1992c) An empirical bound on the compressibility of the cochlea. J Acoust Soc Am 92:1382–1388.

    Article  PubMed  CAS  Google Scholar 

  • Siebert WA (1970) Simple model of the impedance matching properties of the external ear. Quarterly Progress Report of the Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, pp. 236–242.

    Google Scholar 

  • Siebert WM (1973) Hearing and the ear. In: Brown JHU (ed) Engineering Principles in Physiology, Vol. 1. New York: Academic Press, pp. 139–184.

    Google Scholar 

  • Silman S (1984) The Acoustic Reflex: Basic Principles and Clinical Applications. New York: Academic Press.

    Google Scholar 

  • Stinson MR (1985) The spatial distribution of sound pressure within scaled replicas of the human ear. J Acoust Soc Am 78:1596–1602.

    Article  PubMed  CAS  Google Scholar 

  • Stinson MR (1986) Spatial distribution of sound pressure in the ear canal. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. New York: Springer-Verlag, pp. 13–20.

    Google Scholar 

  • Stinson MR, Khanna SM (1989) Specification of the geometry of the human ear canal for the prediction of sound-pressure level distribution. J Acoust Soc Am 85:2492–2503.

    Article  PubMed  CAS  Google Scholar 

  • Teranishi R, Shaw EAG (1968) External ear acoustic models with simple geometry. J Acoust Soc Am 44:257–263.

    Article  PubMed  CAS  Google Scholar 

  • Tonndorf J (1972) Bone conduction. In: Tobias JV (ed) Foundations of Auditory Theory, Vol. II. New York: Academic Press, pp. 197–237.

    Google Scholar 

  • Tonndorf J, Khanna SM (1970) the role of the tympanic membrane in middle ear transmission. Ann Otol 79:734–753.

    Google Scholar 

  • Tonndorf J, Khanna SM (1972) Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. J Acoust Soc Am 52:1221–1233.

    Article  PubMed  CAS  Google Scholar 

  • Tonndorf J, Khanna, SM (1976) Mechanics of the auditory system. In: Hinchcliffe R, Harrison D (eds) Scientific Foundations of Otolaryngology. London: Heineman, pp. 237–252.

    Google Scholar 

  • Tonndorf J, Tabor JR (1962) Closure of the cochlear windows. Ann Otol Rhinol Laryngol 71:5–29.

    PubMed  CAS  Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. New York: McGraw-Hill.

    Google Scholar 

  • von Helmholtz HL (1877) The Sensation of Tones. (Translated by Ellis AJ, 1954). New York: Dover.

    Google Scholar 

  • von Schwarz L (1943) Theorie der Beugung einer ebenen Schallwelle an der Kugel. Akust Z 8:91–117.

    Google Scholar 

  • von Waetzmann E, Keibs L (1936) Theoretischer und experimenteller Vergleigh von Hörschwellenmessungen. Akust Z 1:1–12.

    Google Scholar 

  • Wada H, Kobayashi T (1990) Dynamical behavior of the middle ear: theoretical study corresponding to measurement results obtained by a newly developed measuring apparatus. J Acoust Soc Am 87:237–245.

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Metoki T, Kobayashi T (1992) Analysis of dynamic behavior of human middle ear using a finite-element method. J Acoust Soc Am 92:3157–3168.

    Article  PubMed  CAS  Google Scholar 

  • Wever EG, Lawrence M (1950) The acoustic pathways to the cochlea. J Acoust Soc Am 22:460–467.

    Article  Google Scholar 

  • Wever EG, Lawrence M (1954) Physiological Acoustics. Princeton: Princeton University Press.

    Google Scholar 

  • Wiener FM (1947a) On the diffraction of a progressive sound wave by the human head. J Acoust Soc Am 19:143–146.

    Article  Google Scholar 

  • Wiener FM (1947b) Sound diffraction by rigid spheres and circular cylinders. J Acoust Soc Am 19:444–451.

    Article  Google Scholar 

  • Wiener FM, Ross DA (1946) The pressure distribution in the auditory canal in a progressive sound field. J Acoust Soc Am 18:401–408.

    Article  Google Scholar 

  • Wiener FM, Pfeiffer RR, Backus ASN (1966) On the sound pressure transformation by the head and auditory meatus of the cat. Acta Otolaryngol 61: 255–269.

    Article  PubMed  CAS  Google Scholar 

  • Wightman FL, Kistler DJ (1989) Headphone simulation of free-field listening. I: Stimulus synthesis. J Acoust Soc Am 85:858–867.

    Article  PubMed  CAS  Google Scholar 

  • Wullstein H (1956) The restoration of the function of the middle ear, in chronic otitis media. Ann Otol Rhinol Laryngol 65:1020–1041.

    Google Scholar 

  • Zuercher JC, Carlson EV, Killion MC (1988) Small acoustic tubes: new approximations including isothermal and viscous effects. J Acoust Soc Am 83:1653–1660.

    Article  Google Scholar 

  • Zwillenberg D, Konkle DF, Saunders JC (1981) Measures of middle ear admittance during experimentally induced changes in middle-ear volume in hamster. Otolaryngol Head Neck Surg 89:856–860.

    PubMed  CAS  Google Scholar 

  • Zwislocki J (1962) Analysis of the middle-ear function. Part I: Input impedance. J Acoust Soc Am 34:1514–1523.

    Article  Google Scholar 

  • Zwislocki J (1963) Analysis of the middle ear function. Part II. Guinea-pig ear. J Acoust Soc Am 35:1034–1040.

    Article  Google Scholar 

  • Zwislocki J (1965) Analysis of some auditory characteristics. In: Luce RD, Bush RR, Galanter E (eds) Handbook of Mathematical Psychology, Vol. III. New York: Wiley, pp. 3–97.

    Google Scholar 

  • Zwislocki J (1975) The role of the external and middle ear in sound transmission. In: Tower DB (ed) The Nervous System, Vol. 3, Human Communication and Its Disorders. New York: Raven Press, pp. 45–55.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Rosowski, J.J. (1996). Models of External- and Middle-Ear Function. In: Hawkins, H.L., McMullen, T.A., Popper, A.N., Fay, R.R. (eds) Auditory Computation. Springer Handbook of Auditory Research, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4070-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4070-9_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8487-1

  • Online ISBN: 978-1-4612-4070-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics