Skip to main content

Further Computations Involving Time

  • Chapter
Auditory Computation

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 6))

Abstract

The concept of temporal order, as embedded in the notions of before, after, and simultaneous, is useful for considering the activities of the individual organism and the effectiveness with which it interacts with the world in which it lives. The potential prey organism will be more likely to survive, for example, if it detects the presence of the predator before the predator is close enough for an effective attack; and, in that case, the motor actions involved in flight from the predator will be effective if they are carried out in a particular temporal order, but ineffective otherwise. Therefore, the organism whose nervous system is able to embody temporal order in its computations will have distinct selective advantages over an organism whose nervous system is unable to do so. One expects that nervous systems have evolved with that ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amit DJ (1988) Neural networks counting chimes. Proc Natl Acad Sci USA 85:2141–2145.

    Article  PubMed  CAS  Google Scholar 

  • Baddeley A (1992) Working memory. Science 255:556–559.

    Article  PubMed  CAS  Google Scholar 

  • Baddeley A, Logie R (1992) Auditory imagery and working memory. In: Reisberg D (ed) Auditory Imagery. Hillsdale: Erlbaum, pp. 179–197.

    Google Scholar 

  • Baddeley A, Costanza P, Norris D (1991) Phonological memory and serial order: a sandwich for TODAM. In: Hockley WE, Lewandowsky S (eds) Relating Theory and Data: Essays on Human Memory in Honor of Bennet B. Murdock. Hillsdale: Erlbaum, pp. 175–194.

    Google Scholar 

  • Baddeley AD, Thomson N, Buchanan M (1975) Word length and the structure of short-term memory. J Verb Learn Verb Behav 14:575–589.

    Article  Google Scholar 

  • Baird B (1987) Bifurcation analysis of a network model of rabbit olfactory bulb with periodic attractors stored by a sequence learning algorithm. In: Proceedings of the First IEEE International Conference on Neural Networks, Vol. II. New York: Institute of Electrical and Electronic Engineers, pp. 147–152.

    Google Scholar 

  • Belleville S, Peretz I, Arguin M (1992) Contribution of articulatory rehearsal to short-term memory: evidence from a case of selective disruption. Brain Lang 43:713–746.

    Article  PubMed  CAS  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis. Cambridge: MIT Press.

    Google Scholar 

  • Bregman AS, Campbell J (1971) Primary auditory stream segregation and perception of order in rapid sequences of tones. J Exp Psychol 89:244–249.

    Article  PubMed  CAS  Google Scholar 

  • Brown GDA (1989) A connectionist model of phonological short-term memory. In: Proceedings of the 11th Conference of the Cognitive Science Society. Hillsdale: Erlbaum, pp. 572–579.

    Google Scholar 

  • Brüel PV, Baden-Kristensen K (1985) Time constants of various parts of the human auditory system and some of their consequences. In: Michelsen A (ed) Time Resolution in Auditory Systems. Berlin: Springer, pp. 205–214.

    Google Scholar 

  • Calabrese RL, De Schutter E (1992) Motor-pattern-generating networks in invertebrates: modeling our way toward understanding. Trends Neurosci 15:439–445.

    Article  PubMed  CAS  Google Scholar 

  • Chi MTH (1976) Short-term memory limitations in children: capacity or processing deficits? Memory Cognit 4:559–572.

    Article  CAS  Google Scholar 

  • Church RM, Broadbent HA (1992) Biological and psychological description of an internal clock. In: Gormezano I, Wasserman EA (eds) Learning and Memory. Hillsdale: Erlbaum, pp. 105–127.

    Google Scholar 

  • Cramer EM, Huggins WH (1958) Creation of pitch through binaural interaction. J Acoust Soc Am 30:413–417.

    Article  Google Scholar 

  • de Boer E (1985) Auditory time constants: a paradox? In: Michelsen A (ed) Time Resolution in Auditory Systems. Berlin: Springer, pp. 141–158.

    Google Scholar 

  • Dehaene S, Changeux JP, Nadal JP (1987) Neural networks that learn temporal sequences by selection. Proc Natl Acad Sci USA 84:2727–2731.

    Article  PubMed  CAS  Google Scholar 

  • Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210:492–498.

    Article  PubMed  CAS  Google Scholar 

  • Dempster FN (1981) Memory span: sources of individual and developmental differences. Psychol Bull 89:63–100.

    Article  Google Scholar 

  • Doherty JA, Gerhardt HC (1984) Acoustic communication in hybrid treefrogs: sound production by males and selective phonotaxis by females. J Comp Physiol A 154:319–330.

    Article  Google Scholar 

  • Elman JL (1990) Finding structure in time. Cognit Sci 14:179–211.

    Article  Google Scholar 

  • Elman JL (1991) Distributed representations, simple recurrent networks, and grammatical structure. Mach Learn 7:195–225.

    Google Scholar 

  • Frick RW (1989) Explanations of grouping in immediate ordered recall. Memory Cognit 17:551–562.

    Article  CAS  Google Scholar 

  • Gardner RB, Darwin CJ (1986) Grouping of vowel harmonics by frequency modulation: absence of effects on phonemic categorization. Percept Psychophys 40:183–187.

    Article  PubMed  CAS  Google Scholar 

  • Glenberg AM, Jona M (1991) Temporal coding in rhythm tasks revealed by modality effects. Memory Cognit 19:514–522.

    Article  CAS  Google Scholar 

  • Green DM (1985) Temporal factors in psychoacoustics. In: Michelsen A (ed) Time Resolution in Auditory Systems. Berlin: Springer, pp. 122–140.

    Google Scholar 

  • Greene RL, Crowder RG (1988) Memory for serial position: effects of spacing, vocalization, and stimulus suffixes. J Exp Psychol Learn Memory Cognit 14:740–748.

    Article  Google Scholar 

  • Grosberg S (1974) Classical and instrumental learning by neurological networks. In: Progress in Theoretical Biology, Vol. 3. New York: Academic Press, pp. 51–141.

    Google Scholar 

  • Grossberg S, Stone G (1986) Neural dynamics of attention switching and temporal-order information in short-term memory. Memory Cognit 14:451–468.

    Article  CAS  Google Scholar 

  • Harcum ER (1967) Parallel functions of serial learning and tachistoscopic pattern perception. Psychol Rev 74:51–62.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann WM (1988) Pitch perception and the segregation and integration of auditory entities. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 623–645.

    Google Scholar 

  • Hearly AF (1974) Separating order from information in short-term memory. J Verb Learn Verb Behav 13:644–655.

    Article  Google Scholar 

  • Hill AV (1936) Excitation and accommodation in nerve. Proc R Soc Lond B 119:305–355.

    Article  Google Scholar 

  • Hinton GE, Sejnowski TJ (1983) Optimal perceptual inference. Proc IEEE Comp Sci Conf Computer Vision and Pattern Recognition, Silver Spring, MD, USA: IEEE Computer Soc. Press, pp. 448–453.

    Google Scholar 

  • Hoy RR (1978) Acoustic communication in crickets: a model system for the study of feature detection. Fed Proc 37:2316–2323.

    PubMed  CAS  Google Scholar 

  • Hoy RR, Hahn J, Paul RC (1977) Hybrid cricket auditory behavior: evidence for genetic coupling in animal communication. Science 195:82–84.

    Article  PubMed  CAS  Google Scholar 

  • Hulme C, Muir C (1985) Developmental changes in speech rate and memory span: a causal relationship? Br J Dev Psychol 3:175–181.

    Article  Google Scholar 

  • Jespers PGA (1982) Pulsed circuits, logic circuits, and waveform generators. In: Fink DG, Christiansen D (eds) Electronics Engineers’ Handbook. New York: McGraw-Hill, pp. 16-1–16-55.

    Google Scholar 

  • Jones D, Morris N (1992) Irrelevant speech and serial recall: implications for theories of attention and working memory. Scand J Psychol 33:212–229.

    Article  PubMed  CAS  Google Scholar 

  • Jordan MI (1986) Serial order: a parallel distributed processing approach. La Jolla: University of California Institute for Cognitive Sciences, Report 8604.

    Google Scholar 

  • Kohonen T (1977) Associative memory: a system theoretical approach. New York: Springer-Verlag.

    Google Scholar 

  • Kupfermann I (1991) Learning and memory. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of Neural Science. New York: Elsevier, pp. 997–1008.

    Google Scholar 

  • Ladefoged P (1982) A Course in Phonetics. New York: Harcourt Brace Jovanovich.

    Google Scholar 

  • Mannes C, Dorffner G (1989) Self-organizing detectors for spatiotemporal patterns. Osterreichisches Forschungszentrum Seibersdorf, Vienna, Austria.

    Google Scholar 

  • Mattingly IG, Liberman AM (1988) Specialized perceiving systems for speech and other biologically significant sounds. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 775–793.

    Google Scholar 

  • McAuley JD, Anderson SE, Port RF (1992) Sensory discrimination in a short-term dynamic memory. In: Proceedings of the 14th Annual Conference of the Cognitive Science Society. Hillsdale: Erlbaum, pp. 136–140.

    Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of ideas immanent in nervous activity. Bull Math Biophys 5:115–133.

    Article  Google Scholar 

  • McGurk H, MacDonald J (1976) Hearing lips and seeing voices. Nature 264: 746–748.

    Article  PubMed  CAS  Google Scholar 

  • Michelsen A, Larsen ON, Surlykke A (1985) Auditory processing of temporal cues in insect songs: frequency domain or time domain? In: Michelsen A (ed) Time Resolution in Auditory Systems. Berlin: Springer, pp. 3–27.

    Google Scholar 

  • Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–87.

    Article  PubMed  CAS  Google Scholar 

  • Monnier A (1934) L’Excitation Électrique des tissus. Paris: Hermann.

    Google Scholar 

  • Moore BCJ (1989) An Introduction to the Psychology of Hearing. London: Academic Press.

    Google Scholar 

  • Moore SW, Lewis ER, Narins PM, Lopez PT (1989) The call-timing algorithm of the white-lipped frog, Leptodactylus albilabris. J Comp Physiol A 164:309–319.

    Article  Google Scholar 

  • Murdock BB Jr (1974) Human memory: theory and data. Potomac, Maryland: Erlbaum.

    Google Scholar 

  • Nords D (1990) A dynamic-net model of human speech recognition. In: Altmann GTM (ed) Cognitive Models of Speech Processing. Cambridge & MIT Press, pp. 87–104.

    Google Scholar 

  • Pearson K (1976) The control of walking. Sci Am 235(6):72–86.

    Article  PubMed  CAS  Google Scholar 

  • Pires A, Hoy RR (1992) Temperature coupling in cricket acoustic communication. J Comp Physiol A 171:79–92.

    Article  PubMed  CAS  Google Scholar 

  • Pitts W, McCulloch WS (1947) How we know universals—the perception of auditory and visual forms. Bull Math Biophys 9:127–147.

    Article  PubMed  CAS  Google Scholar 

  • Port RF (1990) Representation and recognition of temporal patterns. Connection Sci 2:151–176.

    Article  Google Scholar 

  • Port R, Anderson S (1989) Recognition of melody fragments in continuously performed music. In: Proceedings of the 11th Conference of the Cognitive Science Society. Hillsdale: Erlbaum, pp. 820–827.

    Google Scholar 

  • Povel DJ (1981) Internal representation of simple temporal patterns. J Exp Psychol Hum Percept Perform 7:3–18.

    Article  PubMed  CAS  Google Scholar 

  • Povel DJ (1984) A theoretical framework for rhythm perception. Psychol Res 45:315–337.

    Article  PubMed  CAS  Google Scholar 

  • Povel DJ, Essens P (1985) Perception of temporal patterns. Music Percept 2:411–440.

    Google Scholar 

  • Rabiner LR, Juang B (1986) An introduction to hidden Markov models (Speech recognition and processing). IEEE ASSP Mag 3(1):4–16.

    Article  Google Scholar 

  • Rand TC (1974) Dichotic release from masking for speech. J Acoust Soc Am 55:678–680.

    Article  PubMed  CAS  Google Scholar 

  • Rashevsky N (1933) Outline of a physico-mathematical theory of excitation and inhibition. Protoplasma 20:42–56.

    Article  CAS  Google Scholar 

  • Reiss RF (1962) A theory and simulation of rhythmic behavior due to reciprocal inhibition in small nerve nets. Proc AFIPS Spring Joint Comput Conf 21:171–194.

    Google Scholar 

  • Rosenblatt F (1962) Principles of Neurodynamics. Washington, DC: Spartan.

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error propagation. La Jolla: University of California Institute for Cognitive Sciences, Report 8506.

    Google Scholar 

  • Schreiner CE, Langner G (1988) Coding of temporal patterns in the central auditory nervous system. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 337–361.

    Google Scholar 

  • Schweickert R, Boruff B (1986) Short-term memory capacity: magic number or magic spell? J Exp Psychol Learn Memory Cognit 12:419–425.

    Article  CAS  Google Scholar 

  • Sejnowski TJ, Rosenberg CR (1986) NETtalk: a parallel network that learns to read aloud. Baltimore: Johns Hopkins University, Dept. of EECS, Report 86/01.

    Google Scholar 

  • Servan-Schreiber D, Cleeremans A, McClelland JL (1989) Learning sequential structure in simple recurrent networks. In: Touretzky DS (ed) Advances in Neural Information Processing Systems. San Mateo: Kaufman, pp. 643–652.

    Google Scholar 

  • Spinelli DN (1970) OCCAM: a computer model for a content addressable memory in the central nervous system. In: Pribram KH, Broadbent E (eds) Biology of Memory. New York: Academic Press, pp. 293–306.

    Google Scholar 

  • Standing L, Bond B, Smith P, Isely C (1980) Is the immediate memory span determined by subvocalization rate? Br J Psychol 71:525–539.

    Article  Google Scholar 

  • Stanley JC, Kilmer WL (1975) A wave model of temporal sequence learning. Int J Man Mach Stud 7:395–412.

    Article  Google Scholar 

  • Stornetta WS, Hogg T, Huberman BA (1988) A dynamical approach to temporal pattern processing. In: Anderson DZ (ed) Neural Information Processing Systems. New York: American Institute of Physics, pp. 750–759.

    Google Scholar 

  • Sturges PT, Martin JG (1974) Rhythmic structure in auditory temporal pattern perception and immediate memory. J Exp Psychol 102:377–383.

    Article  PubMed  CAS  Google Scholar 

  • Tank DW, Hopfield JJ (1987) Neural computation by concentrating information in time. Proc Natl Acad Sci USA 84:1896–1900.

    Article  PubMed  CAS  Google Scholar 

  • von der Malsberg C, Buhmann J (1992) Sensory segmentation with coupled neural oscillators. Biol Cybern 67:233–242.

    Article  Google Scholar 

  • Waibel A, Hanazawa T, Hinton G, Shikano K, Lang K (1988) Phoneme recognition: neural networks vs. hidden Markov models. Proc Intl Conf Acoust Speech Sign Proc 1:107–110.

    Google Scholar 

  • Wang D, Arbib MA (1990) Complex temporal sequence learning based on short-term memory. Proc IEEE 78:1536–1543.

    Article  Google Scholar 

  • Wang XJ, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comp 4:84–97.

    Article  Google Scholar 

  • Widrow G, Hoff ME (1960) Adaptive switching circuits. IRE WESCON Conv Rec 4:96–104.

    Google Scholar 

  • Williams RJ, Zipser D (1988) A learning algorithm for continually running fully recurrent neural networks. La Jolla: University of California Institute for Cognitive Sciences, Report 8805.

    Google Scholar 

  • Williams RJ, Zipser D (1989) A learning algorithm for continually running fully recurrent neural networks. Neural Comp 1:270–280.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Lewis, E.R. (1996). Further Computations Involving Time. In: Hawkins, H.L., McMullen, T.A., Popper, A.N., Fay, R.R. (eds) Auditory Computation. Springer Handbook of Auditory Research, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4070-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4070-9_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8487-1

  • Online ISBN: 978-1-4612-4070-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics