Dynamics of Twist and Writhe and the Modeling of Bacterial Fibers

  • Michael Tabor
  • Isaac Klapper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 82)


We discuss a range of issues associated with the dynamics of twist and writhe including some new theoretical and numerical results and techniques. A precise understanding of twist and writhe is important in a variety of physical and biological processes and, in particular, we describe how these ideas can be used to model the dynamics of the self-assembling bacterial fiber, bacilus subtilis.


Vortex Torque Rubber Soliton Bacillus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Do Carmo, M.P. (1976), Differential Geometry of Curves and Surfaces (Prentice-Hall, Englewood Cliffs, NJ).Google Scholar
  2. [2]
    Hasimoto, H. (1972), A soliton on a vortex filament, J. Fluid Mech. 51, 477–485.CrossRefGoogle Scholar
  3. [3]
    Lamb, G.L. (1977), Solitons on moving space curves, J. Math. Phys. 18, 1654–1661.CrossRefGoogle Scholar
  4. [4]
    Langer, J. and Perline, R. (1991), Poisson geometry of the filament equations, J. Nonlinear Sci. 1, 71–93.CrossRefGoogle Scholar
  5. [5]
    Keener, J.P. (1990), Knotted vortex filaments in an ideal fluid, J. Fluid Mech. 211, 629–651.CrossRefGoogle Scholar
  6. [6]
    Goldstein, R.E. and Petrich, D.M. (1991), The Korteweg de Vries hierarchy as dynamics of closed curves in the plane, Phys. Rev. Lett. 67, 3203–3206.CrossRefGoogle Scholar
  7. [7]
    Berry, M.V. and Hannay, J.H. (1988), Classical non-adiabatic angles, J. Phys. A: Math. Gen. 21, L325–L331.CrossRefGoogle Scholar
  8. [8]
    Rolfsen, D. (1976), Knots and Links (Publish or Perish, Berkeley, CA).Google Scholar
  9. [9]
    Gauss, C.F. (1877), Zur mathematischen théorie der electrodynamischen Wirkungen, Koniglichen Gesellschaft der Wissienshaften zu Gottingen 5, 602–629.Google Scholar
  10. [10]
    Milnor, J.W. (1965), Topology from the Differentaible Viewpoint (The University Press of Virginia, Charlottesville).Google Scholar
  11. [11]
    Pohl, W.F. (1980), DNA and differential geometry, Math. Intelligencer 3, 20–27.CrossRefGoogle Scholar
  12. [12]
    Berger, M.A. and Field, G.B. (1984), The topological properties of magnetic helicity, J. Fluid Mech. 147, 133–148.CrossRefGoogle Scholar
  13. [13]
    Moffatt, H.K. and Ricca, R.L. (1992), Helicity and the Calugareanu invariant, Proc. Roy. Soc. A 439, 411.CrossRefGoogle Scholar
  14. [14]
    Zajac, E.E. (1962), Stability of two planar loop elasticas, J. Appl. Mech. 29, 136–142.Google Scholar
  15. [15]
    Benham, C.J. (1989), Onset of writhing in circular elastic polymers, Phys. Rev. A 39, 2582–2586.CrossRefGoogle Scholar
  16. [16]
    Fuller, F.B. (1971), The writhing number of a space curve, Proc. Natl. Acad. Sci. USA 68, 815–819.CrossRefGoogle Scholar
  17. [17]
    Fuller, F.B. (1978), Decomposition of the linking number of a closed ribbon: A problem from molecular biology, Proc. Natl. Acad. Sci. USA 75, 3557–3561.CrossRefGoogle Scholar
  18. [18]
    Aldinger, J., Klapper, I., and Tabor, M. (1995), Formulae for the calculation and estimation of writhe, J. Knot Theory Ramifications 4, 343–372.CrossRefGoogle Scholar
  19. [19]
    Klapper, I. and Tabor, M. (1994), A new twist in the kinematics and elastic dynamics of curves and ribbons, J. Phys. A: Math. Gen. 27, 4919–4924.CrossRefGoogle Scholar
  20. [20]
    Mendelson, N.H. (1990), Bacterial macrofibers: the morphogenesis of complex multicellular bacterial forms, Sci. Progress Oxford 74, 425–441.Google Scholar
  21. [21]
    Thwaites, J.J. and Mendelson, N.H. (1991), Mechanical behavior of bacterial cell walls, Adv. Microbiol. Physiol. 32, 174–222.Google Scholar
  22. [22]
    Love, A.E.H. (1927), A Treaty on the Mathematical Theory of Elasticity, Fourth Edition (Cambridge University Press, Cambridge, reprinted by Dover Publications, New York).Google Scholar
  23. [23]
    Landau, L.D. and Lifschitz, E.M. (1959), Theory of Elasticity (Pergamon Press, Oxford).Google Scholar
  24. [24]
    Coleman, B.D., Dill, E.H., Lembo, M., Lu, Z., and Tobias, I. (1993), On the dynamics of rods in the theory of Kirchhoffand Clebsch, Arch. Rational Mech. Anal. 121, 339.CrossRefGoogle Scholar
  25. [25]
    Simo, J.D., Marsden, J.E., and Krishnaprasad, P.S. (1988), The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods and plates, Arch. Rational Mech. Anal. 104, 125–183.CrossRefGoogle Scholar
  26. [26]
    Maddocks, J.H., et al., this volume.Google Scholar
  27. [27]
    Schlick, T. and Olson, W.K. (1992), Trefoil knotting by molecular dynamics simulations of supercoiled DNA, Science 257, 1110–1115.CrossRefGoogle Scholar
  28. [28]
    Klapper, I. (1994), Biological applications of the dynamics of twisted elastic rods, J. Comp. Phys. in press.Google Scholar
  29. [29]
    Langer, J. and Singer, D.A. (1985), Curve straightening and a minimax argument for closed elastic curves, Topology 24, 75–88.Google Scholar
  30. [30]
    Shi, Y. and Hearst, J.E. (1994), The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling, to appear, J. Chem. Phys. Google Scholar
  31. [31]
    Tsuru, H. and Wadati, M. (1986), Elastic model of highly supercoiled DNA, Biopolymers 25, 2083–2096.CrossRefGoogle Scholar
  32. [32]
    Mendelson, N.H. and Thwaites, J.J. (1990), Bending, folding and buckling processes during bacterial macrofiber morphogenesis, Mat. Res. Soc. Symp. 174, 171–178.CrossRefGoogle Scholar
  33. [33]
    Mendelson, N.H. (1976), Helical growth of Bacillus subtilis: A new model of cell growth, Proc. Natl. Acad. Sci. 73, 1740–1744.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Michael Tabor
    • 1
  • Isaac Klapper
    • 2
  1. 1.Program in Applied MathematicsUniversity of ArizonaTucsonUSA
  2. 2.Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations