Skip to main content

Dynamics of Twist and Writhe and the Modeling of Bacterial Fibers

  • Chapter

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 82))

Abstract

We discuss a range of issues associated with the dynamics of twist and writhe including some new theoretical and numerical results and techniques. A precise understanding of twist and writhe is important in a variety of physical and biological processes and, in particular, we describe how these ideas can be used to model the dynamics of the self-assembling bacterial fiber, bacilus subtilis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Do Carmo, M.P. (1976), Differential Geometry of Curves and Surfaces (Prentice-Hall, Englewood Cliffs, NJ).

    Google Scholar 

  2. Hasimoto, H. (1972), A soliton on a vortex filament, J. Fluid Mech. 51, 477–485.

    Article  Google Scholar 

  3. Lamb, G.L. (1977), Solitons on moving space curves, J. Math. Phys. 18, 1654–1661.

    Article  Google Scholar 

  4. Langer, J. and Perline, R. (1991), Poisson geometry of the filament equations, J. Nonlinear Sci. 1, 71–93.

    Article  Google Scholar 

  5. Keener, J.P. (1990), Knotted vortex filaments in an ideal fluid, J. Fluid Mech. 211, 629–651.

    Article  Google Scholar 

  6. Goldstein, R.E. and Petrich, D.M. (1991), The Korteweg de Vries hierarchy as dynamics of closed curves in the plane, Phys. Rev. Lett. 67, 3203–3206.

    Article  Google Scholar 

  7. Berry, M.V. and Hannay, J.H. (1988), Classical non-adiabatic angles, J. Phys. A: Math. Gen. 21, L325–L331.

    Article  Google Scholar 

  8. Rolfsen, D. (1976), Knots and Links (Publish or Perish, Berkeley, CA).

    Google Scholar 

  9. Gauss, C.F. (1877), Zur mathematischen théorie der electrodynamischen Wirkungen, Koniglichen Gesellschaft der Wissienshaften zu Gottingen 5, 602–629.

    Google Scholar 

  10. Milnor, J.W. (1965), Topology from the Differentaible Viewpoint (The University Press of Virginia, Charlottesville).

    Google Scholar 

  11. Pohl, W.F. (1980), DNA and differential geometry, Math. Intelligencer 3, 20–27.

    Article  Google Scholar 

  12. Berger, M.A. and Field, G.B. (1984), The topological properties of magnetic helicity, J. Fluid Mech. 147, 133–148.

    Article  Google Scholar 

  13. Moffatt, H.K. and Ricca, R.L. (1992), Helicity and the Calugareanu invariant, Proc. Roy. Soc. A 439, 411.

    Article  Google Scholar 

  14. Zajac, E.E. (1962), Stability of two planar loop elasticas, J. Appl. Mech. 29, 136–142.

    Google Scholar 

  15. Benham, C.J. (1989), Onset of writhing in circular elastic polymers, Phys. Rev. A 39, 2582–2586.

    Article  CAS  Google Scholar 

  16. Fuller, F.B. (1971), The writhing number of a space curve, Proc. Natl. Acad. Sci. USA 68, 815–819.

    Article  CAS  Google Scholar 

  17. Fuller, F.B. (1978), Decomposition of the linking number of a closed ribbon: A problem from molecular biology, Proc. Natl. Acad. Sci. USA 75, 3557–3561.

    Article  CAS  Google Scholar 

  18. Aldinger, J., Klapper, I., and Tabor, M. (1995), Formulae for the calculation and estimation of writhe, J. Knot Theory Ramifications 4, 343–372.

    Article  Google Scholar 

  19. Klapper, I. and Tabor, M. (1994), A new twist in the kinematics and elastic dynamics of curves and ribbons, J. Phys. A: Math. Gen. 27, 4919–4924.

    Article  Google Scholar 

  20. Mendelson, N.H. (1990), Bacterial macrofibers: the morphogenesis of complex multicellular bacterial forms, Sci. Progress Oxford 74, 425–441.

    CAS  Google Scholar 

  21. Thwaites, J.J. and Mendelson, N.H. (1991), Mechanical behavior of bacterial cell walls, Adv. Microbiol. Physiol. 32, 174–222.

    Google Scholar 

  22. Love, A.E.H. (1927), A Treaty on the Mathematical Theory of Elasticity, Fourth Edition (Cambridge University Press, Cambridge, reprinted by Dover Publications, New York).

    Google Scholar 

  23. Landau, L.D. and Lifschitz, E.M. (1959), Theory of Elasticity (Pergamon Press, Oxford).

    Google Scholar 

  24. Coleman, B.D., Dill, E.H., Lembo, M., Lu, Z., and Tobias, I. (1993), On the dynamics of rods in the theory of Kirchhoffand Clebsch, Arch. Rational Mech. Anal. 121, 339.

    Article  Google Scholar 

  25. Simo, J.D., Marsden, J.E., and Krishnaprasad, P.S. (1988), The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods and plates, Arch. Rational Mech. Anal. 104, 125–183.

    Article  Google Scholar 

  26. Maddocks, J.H., et al., this volume.

    Google Scholar 

  27. Schlick, T. and Olson, W.K. (1992), Trefoil knotting by molecular dynamics simulations of supercoiled DNA, Science 257, 1110–1115.

    Article  CAS  Google Scholar 

  28. Klapper, I. (1994), Biological applications of the dynamics of twisted elastic rods, J. Comp. Phys. in press.

    Google Scholar 

  29. Langer, J. and Singer, D.A. (1985), Curve straightening and a minimax argument for closed elastic curves, Topology 24, 75–88.

    Google Scholar 

  30. Shi, Y. and Hearst, J.E. (1994), The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling, to appear, J. Chem. Phys.

    Google Scholar 

  31. Tsuru, H. and Wadati, M. (1986), Elastic model of highly supercoiled DNA, Biopolymers 25, 2083–2096.

    Article  CAS  Google Scholar 

  32. Mendelson, N.H. and Thwaites, J.J. (1990), Bending, folding and buckling processes during bacterial macrofiber morphogenesis, Mat. Res. Soc. Symp. 174, 171–178.

    Article  Google Scholar 

  33. Mendelson, N.H. (1976), Helical growth of Bacillus subtilis: A new model of cell growth, Proc. Natl. Acad. Sci. 73, 1740–1744.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Tabor, M., Klapper, I. (1996). Dynamics of Twist and Writhe and the Modeling of Bacterial Fibers. In: Mesirov, J.P., Schulten, K., Sumners, D.W. (eds) Mathematical Approaches to Biomolecular Structure and Dynamics. The IMA Volumes in Mathematics and its Applications, vol 82. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4066-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4066-2_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94838-6

  • Online ISBN: 978-1-4612-4066-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics