Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 82))

Abstract

This contribution is an informal essay based on a talk delivered at the Institute for Mathematics and its Applications (IMA) in Minneapolis, under the summer program in molecular biology, July 18–22, 1994. I exclude many technical details, which can be found elsewhere, and instead focus on the basic ideas of molecular dynamics simulations, with the goal of conveying to students and non-specialists the key concepts of the theory and practice of large-scale simulations. Following a description of the basic idea in molecular dynamics, I discuss some of the practical details involved in simulations of large biological molecules, the numerical timestep problem, and approaches to this problem based on implicit-integration techniques. I end with a perspective of open challenges in the field and directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. S. de Laplace. Oeuvres Complètes de Laplace. Théorie Analytique des Probabilités, volume VII Gauthier-Villars, Paris, France, 3 edition, 1820.

    Google Scholar 

  2. J. A. McCammon and S. C. Harvey. Dynamics of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, MA, 1987.

    Google Scholar 

  3. M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, New York, New York, 1990.

    Google Scholar 

  4. C. L. Brooks III, M. Karplus, and B. M. Pettitt. Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics, volume LXXI of Advances in Chemical Physics. John Wiley & Sons, New York, New York, 1988.

    Google Scholar 

  5. F. M. Richards. The protein folding problem. Sci. Amer., 264:54–63, 1991.

    Article  CAS  Google Scholar 

  6. H. S. Chan and K. A. Dill. The protein folding problem. Physics Today, 46:24–32, 1993.

    Article  CAS  Google Scholar 

  7. R. W. Pastor. Techniques and applications of Langevin dynamics simulations. In G. R. Luckhurst and C. A. Veracini, editors, The Molecular Dynamics of Liquid Crystals, pages 85–138. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.

    Google Scholar 

  8. M. Vásquez, G. Némethy, and H. A. Scheraga. Conformational energy calculations on polypeptides and proteins. Chemical Reviews, 94:2183–2239, 1994.

    Article  Google Scholar 

  9. J. Phillip Bowen and N. L. Allinger. Molecular mechanics: The art and science of parameterization. In K. B. Lipkowitz and D. B. Boyd, editors, Reviews in Computational Chemistry, volume II, pages 81–97. VCH Publishers, New York, New York, 1991.

    Chapter  Google Scholar 

  10. U. Burkert & N. L. Allinger. Molecular Mechanics, volume 177 of American Chemical Society Monograph. ACS, Washington, D. C, 1982.

    Google Scholar 

  11. S. Lifson. Potential energy functions for structural molecular biology. In D. B. Davies, W. Saenger, and S. S. Danyluk, editors, Methods in Structural Molecular Biology, pages 359–385. Plenum Press, London, 1981.

    Google Scholar 

  12. I. K. Roterman, M. H. Lambert, K. D. Gibson, and H. A. Scheraga. A comparison of the CHARMM, AMBER and ECEPP potentials for peptides. J. Biomol. Struct. Dyn., 7:391–452, 1989.

    CAS  Google Scholar 

  13. P. A. Kollman and K. A. Dill. Decisions in force field development: An alternative to those described by Roterman et al. J. Biomol. Struct. Dyn., 8:1103–1107, 1991.

    CAS  Google Scholar 

  14. K. B. Gibson and H.A. Scheraga. Decisions in force field development: Reply to Kollman and Dill. J. Biomol. Struct. Dyn., 8:1109–1111, 1991.

    CAS  Google Scholar 

  15. T. Schlick. Modeling and Minimization Techniques for Predicting Three-Dimensional Structures of Large Biological Molecules. PhD thesis, New York University, Courant Institute of Mathematical Sciences, New York, New York, October 1987.

    Google Scholar 

  16. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem., 4:187–217, 1983.

    Article  CAS  Google Scholar 

  17. S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case. An all atom force field for simulations of proteins and nucleic acids. J. Comp. Chem., 7:230–252, 1986.

    Article  CAS  Google Scholar 

  18. Molecular mechanics and modeling, November 1993. Special issue of Chemical Reviews (Volume 93, Number 7).

    Google Scholar 

  19. C. A. Schiffer, J. W. Caldwell, P. A. Kollman, and R. M. Stroud. Protein structure prediction with a combined solvation free energy-molecular mechanics force field. Mol. Sim., 10:121–149, 1993.

    Article  Google Scholar 

  20. J. R. Maple, M.-J. Hwang, T. P. Stockfisch, U. Dinur, M. Waldman, C. S. Ewing, and A. T. Hagler. Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules. J. Comp. Chem., 15:162–182, 1994.

    Article  CAS  Google Scholar 

  21. P. Derreumaux and G. Vergüten. Influence of the spectroscopic potential energy function SPASIBA on molecular dynamics of proteins: Comparison with the AMBER potential. J. Mol. Struct., 286:55–64, 1993.

    Google Scholar 

  22. L. Verlet. Computer ‘experiments’ on classical fluids: I. Thermo dynamical properties of Lennard-Jones molecules. Physical Review, 159(1):98–103, July 1967.

    Article  CAS  Google Scholar 

  23. M. P. Calvo and J. M. Sanz-Serna. The development of variable-step symplectic integrators, with application to the two-body problem. SIAM J. Sci. Comput., 14:936, 1993.

    Article  Google Scholar 

  24. P. J. Steinbach and B. R. Brooks. New spherical-cutoff methods for long-range forces in macromolecular simulation. J. Comp. Chem., 15:667–683, 1994.

    Article  CAS  Google Scholar 

  25. H. Grubmuller, H. Heller, A. Windemuth, and K. Schulten. Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol. Sim., 6:121–142, 1991.

    Article  Google Scholar 

  26. J. A. Board Jr., J. W. Causey, T. F. Leathrum Jr., A. Windemuth, and K. Schulten. Accelerated molecular dynamics simulations with the parallel fast multiple algorithm. Chem. Phys. Lett., 198:89–94, 1992.

    Article  Google Scholar 

  27. J. A. Board Jr., L. V. Kale, K. Schulten, R. D. Skeel, and T. Schlick. Modeling biomolecules: Larger scales, longer durations. IEEE Computational Science & Engineering, 1:19–30, Winter 1994.

    Article  CAS  Google Scholar 

  28. H. Frauenfelder and P. G. Wolynes. Biomolecules: Where the physics of complexity and simplicity meet. Physics Today, 47:58–64, 1994.

    Article  CAS  Google Scholar 

  29. H. Frauenfelder, S. G. Sligar, and P. G. Wolynes. The energy landscapes and motions of proteins. Science, 254:1598–1603, 1991

    Article  CAS  Google Scholar 

  30. P.G. Wolynes, J.N. Onuchic, and D. Thirumalai, Navigating the Folding Routes, Science, 267:1619–1620, 1995.

    Article  CAS  Google Scholar 

  31. T. Schlick, B. Li, and W. K. Olson. The influence of salt on DNA energetics and dynamics. Biophys. J., 67:2146–2166, 1994.

    Article  CAS  Google Scholar 

  32. W. F. van Gunsteren and P. K. Weiner, editors. Computer Simulation of Biomolecular Systems. ESCOM, Leiden, The Netherlands, 1989.

    Google Scholar 

  33. P. Derreumaux and T. Schlick. Long-time integration for peptides by the dynamics driver approach. Proteins, Structure, Function and Genetics, 21:282–302, 1995.

    Article  CAS  Google Scholar 

  34. R. W. Pastor, B. R. Brooks, and A. Szabo. An analysis of the accuracy of Langevin and molecular dynamics algorithms. Mol. Phys., 65:1409–1419, 1988.

    Article  Google Scholar 

  35. A. M. Stuart and A. R. Humphries. Model problems in numerical stability theory for initial value problems. SIAM Review, 36:226–257, 1994.

    Article  Google Scholar 

  36. H. A. Scheraga. Predicting three-dimensional structures of oligopeptides. In K. B. Lipkowitz and D. B. Boyd, editors, Reviews in Computational Chemistry, volume III, pages 73–142. VCH Publishers, New York, New York, 1992.

    Chapter  Google Scholar 

  37. Mathematical challenges from theoretical/computational chemistry, National Research Council Report, National Academy Press, Washington, D.C., 1995.

    Google Scholar 

  38. Z. Wu. The effective energy transformation scheme as a special continuation approach to global optimization with application to molecular conformation. SIAM J. Opt., 6, 1996.

    Google Scholar 

  39. E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff Problems, volume 8 of Springer Series in Computational Mathematics. Springer-Verlag, New York, New York, 2 edition, 1993.

    Google Scholar 

  40. E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, volume 14 of Springer Series in Computational Mathematics. Springer-Verlag, New York, New York, 1991.

    Google Scholar 

  41. A. Brünger, C. B. Brooks, and M. Karplus. Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem. Phys. Lett., 105:495–500, 1982.

    Article  Google Scholar 

  42. W. F. van Gunsteren. Constrained dynamics of flexible molecules. Mol. Phys., 40:1015–1019, 1980.

    Article  Google Scholar 

  43. W. F. van Gunsteren and H.J.C. Berendsen. Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys., 34:1311–1327, 1977.

    Article  Google Scholar 

  44. J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen. Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comp. Phys., 23:327–341,1977.

    Article  CAS  Google Scholar 

  45. S. Miyamoto and P. A. Kollman. SETTLE: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comp. Chem., 13:952–962, 1992.

    Article  CAS  Google Scholar 

  46. W. F. van Gunsteren and M. Karplus. Effect of constraints on the dynamics of macromolecules. Macromolecules, 15:1528–1543, 1982.

    Article  Google Scholar 

  47. C. S. Peskin and T. Schlick. Molecular dynamics by the backward Euler’s method. Comm. Pure App. Math., 42:1001–1031, 1989.

    Article  Google Scholar 

  48. T. Schlick and C. S. Peskin. Can classical equations simulate quantum-mechanical behavior? A molecular dynamics investigation of a diatomic molecule with a Morse potential. Comm. Pure App. Math., 42:1141–1163, 1989.

    Article  Google Scholar 

  49. T. Schlick and A. Fogelson. TNPACK — A truncated Newton minimization package for large-scale problems: I. algorithm and usage. ACM Trans. Math. Softw., 14:46–70, 1992.

    Article  Google Scholar 

  50. P. Derreumaux, G. Zhang, B. Brooks, and T. Schlick. A truncated-Newton method adapted for CHARMM and biomolecular applications. J. Comp. Chem., 15:532–552, 1994.

    Article  CAS  Google Scholar 

  51. T. Schlick, S. Figueroa, and M. Mezei. A molecular dynamics simulation of a water droplet by the implicit-Euler/Langevinscheme. J. Chem. Phys., 94:2118–2129, 1991.

    Article  CAS  Google Scholar 

  52. A. Nyberg and T. Schlick. Increasing the time step in molecular dynamics. Chem. Phys. Lett., 198:538–546, 1992.

    Article  CAS  Google Scholar 

  53. T. Schlick and W. K. Olson. Supercoiled DNA energetics and dynamics by computer simulation. J. Mol. Biol., 223:1089–1119, 1992.

    Article  CAS  Google Scholar 

  54. T. Schlick and W. K. Olson. Trefoil knotting revealed by molecular dynamics simulations of supercoiled DNA. Science, 257:1110–1115, 1992.

    Article  CAS  Google Scholar 

  55. G. Ramachandran and T. Schlick. Solvent effects on supercoiled DNA dynamics explored by Langevin dynamics simulations. Phys. Rev. E, 51:6188–6203, 1995.

    Article  CAS  Google Scholar 

  56. G. Zhang and T. Schlick. LIN: A new algorithm combining implicit integration and normal mode techniques for molecular dynamics. J. Comp. Chem., 14:1212–1233, 1993.

    Article  CAS  Google Scholar 

  57. W. B. Streett, D. J. Tildesley, and G. Saville. Multiple time step methods in molecular dynamics. Mol. Phys., 35:639–648, 1978.

    Article  CAS  Google Scholar 

  58. M. E. Tuckerman and B. J. Berne. Molecular dynamics in systems with multiple time scales: Systems with stiff and soft degrees of freedom and with short and long range forces. J. Comp. Chem., 95:8362–8364, 1992.

    Google Scholar 

  59. M. Watanabe and M. Karplus. Dynamics of molecules with internal degrees of freedom by multiple time-step methods. J. Chem. Phys., 99:8063–8074, 1993.

    Article  CAS  Google Scholar 

  60. J. J. Biesiadecki and R. D. Skeel. Dangers of multiple-time-step methods. J. Comp. Phys., 109:318–328, 1993.

    Article  Google Scholar 

  61. G. Zhang and T. Schlick. The Langevin/implicit-Euler/Normal-Mode scheme (LIN) for molecular dynamics at large time steps. J. Chem. Phys., 101:4995–5012, 1994.

    Article  CAS  Google Scholar 

  62. J. O’Neil and D. B. Szyld. A block ordering method for sparse matrices. SIAM J. Sci. Stat. Comp., 11:811–823, 1990.

    Article  Google Scholar 

  63. I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford University Press, New York, New York, 1986.

    Google Scholar 

  64. G. H. Golub and C. F. van Loan. Matrix Computations. John Hopkins University Press, Baltimore, MD, 2 edition, 1986.

    Google Scholar 

  65. Z. Zlatev. Computational Methods for General Sparse Matrices. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.

    Google Scholar 

  66. P. Dauber-Osguthorpe and D. J. Osguthorpe. Partitioning the motion in molecular dynamics simulations into characteristic modes of motion. J. Comp. Chem., 14:1259–1271, 1993.

    Article  CAS  Google Scholar 

  67. A. Amadei, A. B. M. Linssen, and H. J. C. Berendsen. Essential dynamics of proteins. Proteins, Structure, Function and Genetics, 17:412–425, 1993.

    Article  CAS  Google Scholar 

  68. J. C. Simo, N. Tarnow, and K. K. Wong. Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Computer Methods in Applied Mechanics and Engineering, 100:63–116, 1991.

    Article  Google Scholar 

  69. G. Zhang and T. Schlick. Implicit discretization schemes for Langevin dynamics. Mol. Phys., 84:1077–1098, 1995.

    Article  CAS  Google Scholar 

  70. M. Mandziuk and T. Schlick. Resonance in chemical-system dynamics simulated by the implicit-midpoint scheme. Chem. Phys. Lett., 237:525–535, 1995.

    Article  CAS  Google Scholar 

  71. N. Grønbech-Jensen and S. Doniach. Long-time overdamped Langevin dynamics of molecular chains. J. Comp. Chem., 15:997–1012, 1994.

    Article  Google Scholar 

  72. J. A. McCammon, B. R. Gelin, and M. Karplus. Dynamics of folded proteins. Nature, 267:585–590, 1977.

    Article  CAS  Google Scholar 

  73. R. S. Struthers, J. Rivier, and A. T. Hagler. Theoretical simulation of conformation, energetics, and dynamics in the design of GnRH analogs. Transactions of the American Crystallographic Association, 20:83–96, 1984. Proceedings of the Symposium on Molecules in Motion, University of Kentucky, Lexington, Kentucky, May 20–21, 1984.

    CAS  Google Scholar 

  74. M. Levitt. Computer simulation of DNA double-helix dynamics. Cold Spring Harbor Symp. Quant. Biol., 47:251–275, 1983.

    Google Scholar 

  75. G. L. Seibel, U. C. Singh, and P. A Kollman. A molecular dynamics simulation of double-helical B-DNA including counterions and water. Proc. Natl. Acad. Sci. USA, 82:6537–6540, 1985.

    Article  CAS  Google Scholar 

  76. J. J. Wendoloski, S. J. Kimatian, C. E. Schutt, and F. R. Salemme. Molecular dynamics simulation of a phospholipid micelle. Science, 243:636–638, 1989.

    Article  CAS  Google Scholar 

  77. H. Heller, M. Schaefer, and K. Schulten. Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid-crystal phases. J. Phys. Chem., 97:8343–8360, 1993.

    Article  CAS  Google Scholar 

  78. P. J. Kraulis. Molscript: A program to produce both detailed and schematic plots of protein structures. J. App. Crystallogr., 24:946–950, 1991.

    Article  Google Scholar 

  79. M.-H. Hao, M.R. Pincus, S. Rackovsky, and H.A. Scheraga. Unfolding and refolding of the native structure of bovine pancreatic trypsin inhibitor studied by computer simulations. Biochemistry, 32:9614–9631, 1993.

    Article  CAS  Google Scholar 

  80. B. Mishra and T. Schlick. Error analysis in numerical integration of the Langevin equation: 1. Linear analysis for five explicit and implicit schemes. Preprint, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Schlick, T. (1996). Pursuing Laplace’s Vision on Modern Computers. In: Mesirov, J.P., Schulten, K., Sumners, D.W. (eds) Mathematical Approaches to Biomolecular Structure and Dynamics. The IMA Volumes in Mathematics and its Applications, vol 82. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4066-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4066-2_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94838-6

  • Online ISBN: 978-1-4612-4066-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics