Advertisement

Special Topics

  • S. S. Sadhal
  • P. S. Ayyaswamy
  • J. N. Chung
Part of the Mechanical Engineering Series book series (MES)

Abstract

The special topics considered in this chapter are concerned with: (i) transport in the presence of an electric field; (ii) transport with a slurry fuel droplet; and (iii) thermocapillary phenomena and transport under conditions of microgravity. An attempt has been made to succinctly discuss the special features that arise in consideration of these topics, and in this context, very recent studies in the published literature have been critically examined.

Keywords

Nusselt Number Stream Function Colloid Interface Heat Mass Transfer Migration Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Acrivos & T.D. Taylor. Heat and mass transfer from single spheres in Stokes flow. Phys. Fluids, 5:387–394, 1962.MathSciNetADSMATHCrossRefGoogle Scholar
  2. [2]
    J.L. Anderson. Droplet interactions in thermocapillary motion. Int. J. Multiphase Flow, 11(6):813–824, 1985.MATHCrossRefGoogle Scholar
  3. [3]
    P. Annamalai, N. Shankar, R. Cole, & R.S. Subramanian. Bubble migration inside a liquid drop in a space laboratory. Appl. Sci. Res., 38:179–186, 1982.CrossRefGoogle Scholar
  4. [4]
    P.J. Antaki. Transient processes in a rigid slurry droplet during liquid vaporization and combustion. Comb. Sci. Technol., 46:113–135, 1986.CrossRefGoogle Scholar
  5. [5]
    P.J. Antaki. Liquid vaporization and combustion from slurry fuel droplets. In Encyclopedia of Environmental Control Technology (Ed.: P.N. Cheremisinoff), chapter 5, pages 179–209. Gulf Publishing, Houston, TX, 1989.Google Scholar
  6. [6]
    P.J. Antaki & RA. Williams. Observations on the combustion of boron slurry droplets in air. Combustion and Flame, 67:1–8, 1987.CrossRefGoogle Scholar
  7. [7]
    P.S. Ayyaswamy. Direct contact transfer processes with moving liquid droplets. In Advances in Heat Transfer (Eds.: J.R Hartnett, T.F. Irvine Jr., & Y.I. Cho), volume 26, pages 1–104. Academic Press, New York, 1995.Google Scholar
  8. [8]
    P.S. Ayyaswamy. Mathematical methods in direct-contact transfer studies with droplets. In Annual Review of Heat Transfer (Ed.: C.L. Tien), volume 7. Begell House, New York, 1996.Google Scholar
  9. [9]
    P.J. Bailes & J.D. Thornton. Electrically augmented liquid-liquid extraction in a two-component system. 1. Single droplet studies. In Proc. Int. Solvent. Extraction Conf., volume 2, pages 1431–1439, The Hague, 1971.Google Scholar
  10. [10]
    P.J. Bailes & J.D. Thornton. Electrically augmented liquid-liquid extraction in a two-component system. 2. Multidroplet studies. In Proc. Int. Solvent. Extraction Conf., volume 2, pages 1011–1027, Lyon, 1974.Google Scholar
  11. [11]
    R. Balasubramaniam & A.T. Chai. Thermocapillary migration of droplets: An exact solution for small Marangoni numbers J. Colloid Interface Sci., 119:531–538, 1987.CrossRefGoogle Scholar
  12. [12]
    R. Balasubramaniam & J.E. Lavery. Numerical simulation of thermocapillary bubble migration under microgravity for large Reynolds and Marangoni numbers. Numer. Heat Transfer A, 16:175–187, 1989.ADSCrossRefGoogle Scholar
  13. [13]
    K.D. Barton & R.S. Subramanian. The migration of liquid drops in a vertical temperature gradient. J. Colloid Interface Sci., 133:211–222, 1989.CrossRefGoogle Scholar
  14. [14]
    K.D. Barton & R.S. Subramanian. Thermocapillary migration of a liquid drop normal to a plane surface. J. Colloid Interface Sci., 137:170–182, 1990.CrossRefGoogle Scholar
  15. [15]
    K.D. Barton & R.S. Subramanian. Migration of liquid drops in a vertical temperature gradient — interaction effects near a horizontal surface. J. Colloid Interface Sci., 141(1):146–156, 1991.CrossRefGoogle Scholar
  16. [16]
    H.F. Bauer & W. Eidel. Marangoni convection in a spherical liquid system. Acta Astronautica, 15:275–290, 1987.ADSMATHCrossRefGoogle Scholar
  17. [17]
    Y.K. Bratukhin. Thermocapillary drift of a viscous droplet. Fluid Dynam. (English translation of: Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza), 10(5):833–837, 1975.Google Scholar
  18. [18]
    L.S. Chang & J.C. Berg. Fluid flow and transfer behavior of a drop translating in an electric field at intermediate Reynolds numbers. Int. J. Heat Mass Transfer, 26:823–832, 1983.MATHCrossRefGoogle Scholar
  19. [19]
    L.S. Chang, T.E. Carleson, & J.C. Berg. Heat and mass transfer to a translating drop in an electric field. Int. J. Heat Mass Transfer, 25:1023–1030, 1982.CrossRefGoogle Scholar
  20. [20]
    B.T. Chao. Transient heat and mass transfer to a translating droplet. ASME J. Heat Transfer, 91:273–281, 1969.Google Scholar
  21. [21]
    J.N. Chung. The motion of particles inside a droplet. ASME J. Heat Transfer, 104:438–445, 1982.ADSCrossRefGoogle Scholar
  22. [22]
    J.N. Chung & D.L.R. Oliver. Transient heat transfer in a fluid sphere translating in an electric field. ASME J. Heat Transfer, 112:84–92, 1990.CrossRefGoogle Scholar
  23. [23]
    L. Dill. On the thermocapillary migration of a growing or a shrinking drop. J. Colloid Interface Sci., 46:533–540, 1991.CrossRefGoogle Scholar
  24. [24]
    F. Feuillebois. Thermocapillary migration of two equal bubbles parallel to their line of centers. J. Colloid Interface Sci., 131:267–274, 1989.CrossRefGoogle Scholar
  25. [25]
    S.K. Griffiths & F.A. Morrison Jr. Low Péclet number heat and mass transfer from a drop in an electric field. J. Heat Transfer, 101:484–488, 1979.CrossRefGoogle Scholar
  26. [26]
    S.K. Griffiths & F.A. Morrison Jr. The transport from a drop in an alternating electric field. Int. J. Heat Mass Transfer, 26:717–726, 1983.MATHCrossRefGoogle Scholar
  27. [27]
    M. Hähnel, V. Delitzsch, & H. Eckelmann. The motion of droplets in a vertical temperature gradient. Phys. Fluids A, 1:1460–1466, 1989.ADSCrossRefGoogle Scholar
  28. [28]
    J.H. Harker & J. Ahmadzadeh. The effect of electric fields on mass transfer from falling drops. Int. J. Heat Mass Transfer, 17:1219–1225, 1974.CrossRefGoogle Scholar
  29. [29]
    T.B. Jones. Electrohydrodynamically enhanced heat transfer in liquids. In Advances in Heat Transfer (Eds.: T.F. Irvine Jr. & J.P. Hartnett), volume 14, pages 107–148. Academic Press, New York, 1978.Google Scholar
  30. [30]
    Y.S. Kao & D.B.R. Kenning. Thermocapillary flow near a hemispherical bubble on a heated wall. J. Fluid Mech., 53:715–735, 1972.ADSMATHCrossRefGoogle Scholar
  31. [31]
    H.J. Keh & S.H. Chen. The axisymmetric thermocapillary motion of two fluid droplets. Int. J. Multiphase Flow, 16(3):515–427, 1990.MATHCrossRefGoogle Scholar
  32. [32]
    H.S. Kim & R.S. Subramanian. Thermocapillary migration of a droplet with insoluble surfactant. II: General case. J. Colloid Interface Sci., 130:112–129, 1989.CrossRefGoogle Scholar
  33. [33]
    H.S. Kim & R.S. Subramanian. Thermocapillary migration of a droplet with insoluble surfactant. I: Surfactant cap. J. Colloid Interface Sci., 127:417–428, 1989.CrossRefGoogle Scholar
  34. [34]
    B.K. Larkin. Thermocapillary flow around a hemispherical bubble. AIChE J., 16(1): 101–107, 1970.MathSciNetCrossRefGoogle Scholar
  35. [35]
    C.K. Law, H.K. Law, & C.H. Lee. Combustion characteristics of coal/oil and coal/oil/water mixtures. Energy, 4:329–339, 1979.ADSCrossRefGoogle Scholar
  36. [36]
    J.J. Lorenz & B.B. Mikic. Effect of thermocapillary flow on heat transfer in dropwise condensation. ASME J. Heat Transfer, 92:46–52, 1970.CrossRefGoogle Scholar
  37. [37]
    M. Lowenberg & R.H. Davis. Near-contact thermocapillary motion of two nonconducting drops. J. Fluid Mech., 256:107–131, 1993.MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    R.R Manohar & S.R.K. Iyengar. Transient heat transfer to a droplet suspended in an electric field. Numer. Heat Transfer, 14:499–510, 1988.ADSMATHCrossRefGoogle Scholar
  39. [39]
    D.M. Mattox, H.D. Smith, W.R. Wilcox, & R.S. Subramanian. Thermal-gradient-induced migration of bubbles in molten glass. J. Amer. Ceramic Soc, 65:437–442, 1982.CrossRefGoogle Scholar
  40. [40]
    R.M. Merritt & R.S. Subramanian. Migration of a gas bubble normal to a plane horizontal surface in a vertical temperature gradient. J. Colloid Interface Sci., 131:514–525, 1989.CrossRefGoogle Scholar
  41. [41]
    R.M. Merritt, D.S. Morton, & R.S. Subramanian. Flow structures in bubble migration under the combined action of buoyancy and thermocapillarity. J. Colloid Interface Sci., 155:200–209, 1993.CrossRefGoogle Scholar
  42. [42]
    R.M. Merritt & R.S. Subramanian. The migration of isolated gas bubbles in a vertical temperature gradient. J. Colloid Interface Sci., 125:333–339, 1988.CrossRefGoogle Scholar
  43. [43]
    M. Meyyappan & R.S. Subramanian. The thermocapillary motion of two bubbles oriented arbitrarily relative to a thermal gradient. J. Colloid Interface Sci., 97(1):291–294, 1984.CrossRefGoogle Scholar
  44. [44]
    M. Meyyappan & R.S. Subramanian. Thermocapillary migration of a gas bubble in an arbitrary direction with respect to a plane surface. J. Colloid Interface Sci., 115(1):206–219, 1987.CrossRefGoogle Scholar
  45. [45]
    M. Meyyappan, W.R. Wilcox, & R.S. Subramanian. Thermocapillary migration of a bubble normal to a plane surface. J. Colloid Interface Sci., 83:199–208, 1981.CrossRefGoogle Scholar
  46. [46]
    M. Meyyappan, W.R. Wilcox, & R.S. Subramanian. The slow axisymmetric motion of two bubbles in a thermal gradient. J. Colloid Interface Sci., 94(l):243–257, 1983.CrossRefGoogle Scholar
  47. [47]
    K. Miyasaka & C.K. Law. Combustion and agglomeration of coal-oil mixtures in furnace environments. Combust. Sci. Technol., 24:71–82, 1980.CrossRefGoogle Scholar
  48. [48]
    F.A. Morrison Jr. Transient heat and mass transfer to a translating droplet. ASME J. Heat Transfer, 99:269–273, 1977.CrossRefGoogle Scholar
  49. [49]
    D.S. Morton, R.S. Subramanian, & R. Balasubramaniam. The migration of a compound drop due to thermocapillarity. Phys. Fluids A, 12:2119–2133, 1990.ADSCrossRefGoogle Scholar
  50. [50]
    M. Nallani & R.S. Subramanian. Migration of methanol drops in a vertical temperature gradient in a silicone oil. J. Colloid Interface Sci., 157:24–31, 1993.CrossRefGoogle Scholar
  51. [51]
    A.B. Newman. The drying of porous solids: Diffusion and surface emission equations. Trans. AIChE, 27:203–220, 1931.Google Scholar
  52. [52]
    H.D. Nguyen & J.N. Chung. Flows inside and around a vaporizing/condensing drop translating in an electric field. ASME J. Appl. Mech., 57:1044–1055, 1990.ADSCrossRefGoogle Scholar
  53. [53]
    H.D. Nguyen & J.N. Chung. Conjugate heat transfer from a translating drop in an electric field at low Péclet number. Int. J. Heat Mass Transfer, 35:443–456, 1992.MATHCrossRefGoogle Scholar
  54. [54]
    H.D. Nguyen & J.N. Chung. Evaporation from a translating drop in an electric field. Int. J. Heat Mass Transfer, 36:3797–3812, 1993.MATHCrossRefGoogle Scholar
  55. [55]
    D.L.R. Oliver, T.E. Carleson, & J.N. Chung. Transient heat transfer to a fluid sphere suspended in an electric field. Int. J. Heat Mass Transfer, 28:1005–1009, 1985.CrossRefGoogle Scholar
  56. [56]
    D.L.R. Oliver & K.J. De Witt. Surface tension driven flows in a micro-gravity environment. Int. J. Heat Mass Transfer, 31:1534–1537, 1988.CrossRefGoogle Scholar
  57. [57]
    D.L.R. Oliver & K.J. De Witt. High Péclet number heat transfer from a droplet suspended in an electric field: Interior problem. Int. J. Heat Mass Transfer, 36:3153–3155, 1993.MATHCrossRefGoogle Scholar
  58. [58]
    S.S. Sadhal. A note on the thermocapillary migration of a bubble normal to a plane surface. J. Colloid Interface Sci., 95:283–286, 1983.CrossRefGoogle Scholar
  59. [59]
    S.S. Sadhal & P.S. Ayyaswamy. Row past a liquid drop with a large non-uniform radial velocity. J. Fluid Mech., 133:65–81, 1983.ADSMATHCrossRefGoogle Scholar
  60. [60]
    S.S. Sadhal & R.E. Johnson. Stokes flow past drops and bubbles coated with thin films. Part 1: Stagnant cap of surfactant film — exact solution. J. Fluid. Mech., 126:237–250, 1983.ADSMATHCrossRefGoogle Scholar
  61. [61]
    S.S. Sadhal & H.N. Oğuz. Stokes flow past compound multiphase drops: Cases of completely engulfed drops/bubbles. J. Fluid Mech., 160:511–529, 1985.MathSciNetADSMATHCrossRefGoogle Scholar
  62. [62]
    S.S. Sadhal, E.H. Trinh, & P. Wagner. Unsteady spot heating of a drop in a microgravity environment. In Fluid Mechanics Phenomena in Microgravity, volume No. AMD-154, pages 105–110. ASME, 1992.Google Scholar
  63. [63]
    T. Sakai & M. Saito. Single droplet combustion of coal slurry fuels. Combustion and Flame, 51:141–154, 1983.CrossRefGoogle Scholar
  64. [64]
    J.A. Satrape. Interactions and collisions of bubbles in thermocapillary motion. Phys. Fluids A, 4(9): 1883–1900, 1992.ADSMATHCrossRefGoogle Scholar
  65. [65]
    T.C. Scott. Surface area generation and droplet size control using pulsed electric fields. AIChE J., 33:1557–1559, 1987.CrossRefGoogle Scholar
  66. [66]
    N. Shankar, R. Cole, & R.S. Subramanian. Thermocapillary migration of a fluid droplet inside a drop in a space laboratory. Int. J. Multiphase Flow, 7:581–594, 1981.MATHCrossRefGoogle Scholar
  67. [67]
    N. Shankar & R.S. Subramanian. The slow axisymmetric thermocapillary migration of an eccentrically placed bubble inside a drop in zero gravity. J. Colloid Interface Sci.,94(1):258–275, 1983.CrossRefGoogle Scholar
  68. [68]
    L. Sharpe & F.A. Morrison Jr. Numerical analysis of heat and mass transfer from fluid spheres in an electric field. ASME J. Heat Transfer, 108:337–342, 1986.CrossRefGoogle Scholar
  69. [69]
    M.B. Stewart & F.A. Morrison Jr. Small Reynolds number electro-hydrodynamic flow around drops and the resulting deformation. ASME J. Heat Transfer, 46:510–512, 1979.MATHGoogle Scholar
  70. [70]
    R.S. Subramanian. Slow migration of a gas bubble in a thermal gradient. AIChE J., 27:646–654, 1981.CrossRefGoogle Scholar
  71. [71]
    R.S. Subramanian. Thermocapillary migration of bubbles and droplets. Adv. Space Res., 3:145–153, 1983.MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    R.S. Subramanian. The Stokes force on a droplet in an unbounded fluid medium due to capillary effects. J. Fluid Mech., 153:389–400, 1985.ADSMATHCrossRefGoogle Scholar
  73. [73]
    R.S. Subramanian. The motion of bubbles and drops in reduced gravity. In Transport Processes with Drops and Bubbles (Eds.: R.P. Chhabra & D. De Kee), pages 1–32. Hemisphere, New York, 1992.Google Scholar
  74. [74]
    J.A. Szymczyk & J. Siekmann. On the thermocapillary motion of a bubble in low gravitational environment. Proc. Int. Symp. Space Technol. Sci., 2:2137–2148, 1986.ADSGoogle Scholar
  75. [75]
    J.A. Szymczyk, G. Wozniak, & J. Siekmann. On Marangoni bubble motion at higher Reynolds and Marangoni numbers under microgravity. Appl. Microgravity Tech., 1:27–29, 1987.ADSGoogle Scholar
  76. [76]
    T. Takamatsu, Y. Hashimoto, M. Yamaguchi, & T. Katayama. Theoretical and experimental studies of charged drop formation in a uniform electric field. J. Chem. Engrg. Japan, 14:178–182, 1981.CrossRefGoogle Scholar
  77. [77]
    G.I. Taylor. Studies in electrohydrodynamics I. The circulation produced in a drop by an electric field. Proc. Roy. Soc. London A, 291:159–166, 1966.ADSCrossRefGoogle Scholar
  78. [78]
    T.D. Taylor & A. Acrivos. On the deformation and drag of a falling viscous drop at low Reynolds number. J. Fluid Mech., 18:466–476, 1964.MathSciNetADSMATHCrossRefGoogle Scholar
  79. [79]
    R.L. Thompson. Marangoni Bubble Motion in Zero Gravity. PhD thesis, University of Toledo, Toledo, Ohio, 1979.Google Scholar
  80. [80]
    R.L. Thompson, K.J. De Witt, & T.L. Labus. Marangoni bubble motion phenomena in zero gravity. Chem. Engrg. Comm., 5:299–314, 1980.CrossRefGoogle Scholar
  81. [81]
    S. Torza, R.G. Cox, & S.G. Mason. Electro-hydrodynamic deformation and bursts of liquid drops. Phil. Trans. Roy. Soc, 269:295–319, 1971.ADSCrossRefGoogle Scholar
  82. [82]
    L. Trefethen. Dropwise condensation and the possible importance of circulation within drops caused by surface tension variation. Technical Report 58GL47, General Electric Co., February 1958.Google Scholar
  83. [83]
    H. Wei & R.S. Subramanian. Interactions between two bubbles under isothermal conditions in a downward temperature gradient. Phys. Fluids, 6(9):2971–2978, 1994.ADSCrossRefGoogle Scholar
  84. [84]
    M. Yamaguchi, Y. Hashimoto, T. Takamatsu, & T. Katayama. Gas absorption by single charged drops during their formation in a uniform electric field. Int. J. Heat Mass Transfer, 25:1631–1639, 1982.CrossRefGoogle Scholar
  85. [85]
    S.C. Yao & P. Manwani. Burning of suspended coal-water slurry droplets with oil as combustion additive. Combustion and Flame, 66:87–89, 1986.CrossRefGoogle Scholar
  86. [86]
    N.O. Young, J.S. Goldstein, & M.J. Block. The motion of bubbles in a vertical temperature gradient. J. Fluid Mech., 6:350–356, 1959.ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • S. S. Sadhal
    • 1
  • P. S. Ayyaswamy
    • 2
  • J. N. Chung
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of Southern CaliforniaUniversity ParkUSA
  2. 2.Department of Mechanical Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Mechanical and Material EngineeringWashington State UniversityPullmanUSA

Personalised recommendations