Skip to main content

Transport at Intermediate and High Reynolds Numbers

  • Chapter
  • 534 Accesses

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

Highly accurate closed-form analytical and perturbation solutions for flow description and transport are available for many low Reynolds number (creeping flow) situations where the nonlinear inertial effects are weak. However, fluid motion and transport at intermediate Reynolds numbers [Re ~ O(1) — O(100)] or even higher values are much more complicated. For example, at higher values of the translational Reynolds number, the external flow may separate as it moves toward the rear of the particle and the internal motion may also consist of secondary vortices. Under such circumstances, various transport mechanisms are set into play and the accurate determination of the magnitude of transport becomes a challenging task. Numerical and experimental studies with a drop have shown that at higher values of the Reynolds number, a recirculatory wake is formed with dimensions that are comparable to the drop size [62,63,87]. In such cases, wake effects may have to be taken into account to ascertain accurately the magnitude of transport quantities. It is well acknowledged that both analytical modeling and numerical evaluations of wake effects are in general difficult due to their elliptic nature. In such situations, we rely on semianalytical or fully numerical solutions to the governing equations. With sophisticated numerical methods and super-computers, it is possible to develop sufficiently accurate and physically realizable solutions to problems in the intermediate and high Reynolds number flow regimes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.H. Abdel-Alim & A.E. Hamielec. A theoretical and experimental investigation of the effect of internal circulation on the drag of spherical droplets at terminal velocity in liquid media. Ind. Engrg. Chem. Fund., 14:308–312, 1975.

    Google Scholar 

  2. B. Abramzon & I. Borde. Conjugate unsteady heat transfer from a droplet in creeping flow. AIChEJ., 26:536–544, 1980.

    Google Scholar 

  3. B. Abramzon & W.A. Sirignano. Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transfer, 32:1605–1618, 1989.

    Google Scholar 

  4. P.S. Ayyaswamy. Combustion dynamics of moving droplets. In Encyclopedia of Environmental Control Technology (Ed.: P.N. Cheremisinoff), chapter 20, pages 479–532. Gulf Publishing, Houston, TX, 1989.

    Google Scholar 

  5. P.S. Ayyaswamy. Direct contact transfer processes with moving liquid droplets. In Advances in Heat Transfer (Eds.: J.P Hartnett, T.F. Irvine Jr., & Y.I. Cho), volume 26, pages 1–104. Academic Press, New York, 1995.

    Google Scholar 

  6. P.S. Ayyaswamy. Mathematical methods in direct-contact transfer studies with droplets. In Annual Review of Heat Transfer (Ed.: C.L. Tien), volume 7. Begell House, New York, 1996.

    Google Scholar 

  7. P.S. Ayyaswamy, S.S. Sadhal, & L.J. Huang. Effect of internal circulation on the transport to a moving liquid drop. Int. Comm. Heat Mass Transfer, 17:689–702, 1990.

    Google Scholar 

  8. K.V. Beard & H.R. Pruppacher. A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmospheric Sci., 28:1455–1464, 1971.

    ADS  Google Scholar 

  9. J.C. Berg. Interfacial phenomena in fluid phase separation processes. In Recent Developments in Separation Science (Ed.: N.N. Li), pages 1–31. Chemical Rubber Co. Press, Cleveland, OH, 1972.

    Google Scholar 

  10. A.S. Brignell. Solute extraction from an internally circulating spherical liquid drop. Int. J. Heat Mass Transfer, 18:61–68, 1975.

    MATH  Google Scholar 

  11. T.H. Chang & J.N. Chung. The effects of surfactants on the motion and transport mechanisms of a condensing droplet in a high Reynolds number flow. AIChE J., 31:1149–1156, 1985.

    Google Scholar 

  12. Y.M. Chen & F. Mayinger. Measurement of heat transfer at the phase interface of condensing bubbles. Int. J. Multiphase Flow, 18(6):877–890, 1992.

    MATH  Google Scholar 

  13. C.H. Chiang, M.S. Raju, & W.A. Sirignano. Numerical analysis of convecting, vaporizing fuel droplet with variable properties. Int. J. Heat Mass Transfer, 35:1307–1324, 1992.

    ADS  MATH  Google Scholar 

  14. C.H. Chiang & W.A. Sirignano. Interacting, convecting, vaporizing fuel droplets with variable properties. Int. J. Heat Mass Transfer, 36(4):875–886, 1993.

    ADS  Google Scholar 

  15. A.J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Computn., 22:745–762, 1968.

    MathSciNet  MATH  Google Scholar 

  16. J.N. Chung & RS. Ayyaswamy. Laminar condensation heat and mass transfer in the vicinity of the forward stagnation point of a spherical droplet translating in a ternary mixture: Numerical and asymptotic solutions. Int. J. Heat Mass Transfer, 21:1309–1324,1978.

    ADS  Google Scholar 

  17. J.N. Chung & P.S. Ayyaswamy. Laminar condensation heat mass transfer to a moving droplet. AIChE J., 27:372–377, 1981.

    Google Scholar 

  18. J.N. Chung & RS. Ayyaswamy. Material removal associated with condensation on a droplet in motion. Int. J. Multiphase Flow, 7:329–342, 1981.

    MATH  Google Scholar 

  19. R. Clift, J.R. Grace, & M.E. Weber. Bubbles, Drops and Particles. Academic Press, New York, 1978.

    Google Scholar 

  20. D.S. Dandy & L.G. Leal. Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds numbers. J. Fluid Mech., 208:161–192, 1989.

    ADS  Google Scholar 

  21. G. de Vahl Davis & G.D. Mallinson. An evaluation of upwind and central difference approximations by a study of recirculating flow. Computers and Fluids, 4:29–43, 1976.

    ADS  MATH  Google Scholar 

  22. S.C.R. Dennis & L. Quartapelle. Direct solution of the vorticity-stream function ordinary differential equations by a Chebyshev approximation. J. Comput. Phys., 52:448–463, 1983.

    MathSciNet  ADS  MATH  Google Scholar 

  23. M. Dimic. Collapse of one-component vapour bubbles with translatory motion. Int. J. Heat Mass Transfer, 20:1322–1325, 1977.

    ADS  Google Scholar 

  24. H.A. Dwyer & B.R. Sanders. Detailed computation of unsteady droplet dynamics. In Twentieth Symposium (Int.) on Combustion, pages 1743–1749. The Combustion Institute, 1984.

    Google Scholar 

  25. H.A. Dwyer & B.R. Sanders. Droplet dynamics and vaporization with pressure as a parameter. ASME Paper No. 84-WA/HT-20, 1984.

    Google Scholar 

  26. H.A. Dwyer & B.R. Sanders. A detailed study of burning fuel droplets. In Twenty — First Symposium (Int.) on Combustion, pages 633–639. The Combustion Institute, 1986.

    Google Scholar 

  27. H.A. Dwyer & B.R. Sanders. A study of the ignition characteristics of droplet fuels and monopropellants. In Proceedings of the Second ASME/JSME Thermal Engineering Joint Conference, Honolulu, Hawaii, 1987.

    Google Scholar 

  28. P. Eisenklam, S.A. Arunachalam, & J.A. Weston. Evaporation rates and drag resistance of burning drops. In Eleventh Symposium (Int.) on Combustion, pages 715–728. The Combustion Institute, 1967.

    Google Scholar 

  29. E.R. Elzinga & J.T. Banchero. Some observations on the mechanics of drops in liquid-liquid systems. AIChE J., 7:394–399, 1961.

    Google Scholar 

  30. G.M. Faeth. Evaporation and combustion sprays. Progr. Energy Combust. Sci., 9:1–76, 1983.

    ADS  Google Scholar 

  31. A.C. Fernandez-Pello. Convective droplet combustion. Invited Paper, 1986 Fall Technical Meeting, Eastern Section of the Combustion Institute, pages D1-D14, San Juan, Puerto Rico, 1986.

    Google Scholar 

  32. A.C. Fernandez-Pello & C.K. Law. On the mixed convective flame structure in the stagnation point of a fuel particle. In Nineteenth Symposium (Int.) on Combustion, pages 1037–1044. The Combustion Institute, 1982.

    Google Scholar 

  33. L.W. Florschuetz & B.T. Chao. On the mechanics of vapor bubble collapse. ASME J. Heat Transfer, 87:209–220, 1979.

    Google Scholar 

  34. N. Frössling. Über die Verdunstung fallenden tropfen. Gerlands Beitrage zur Geophysik, 52:170–216, 1938.

    Google Scholar 

  35. R.M. Griffith. Mass transfer from drops and bubbles. Chem. Engrg. Sci., 12:198–213, 1960.

    Google Scholar 

  36. F.G. Hammitt. Cavitation and Multiphase Flow Phenomena. McGraw-Hill, New York, 1980.

    Google Scholar 

  37. J.F. Harper. The motion of drops and bubbles through liquids. Adv. in Appl. Mech., 12:59–129, 1972.

    Google Scholar 

  38. J.F. Harper & D.W. Moore. The motion of a spherical liquid drop at high Reynolds number.J. Fluid Mech., 32:367–391, 1968.

    ADS  MATH  Google Scholar 

  39. G.M. Harpole. Droplet evaporation in high temperature environments. ASME J. Heat Transfer, 103:86–91, 1981.

    Google Scholar 

  40. R.J. Haywood, R. Nafziger, & M. Renksizbulut. A detailed examination of gas and liquid phase transient process in convective droplet evaporation. ASME J. Heat Transfer, 111:495–502, 1989.

    Google Scholar 

  41. R.J. Haywood, M. Renksizbulut, & G.D. Raithby. Numerical solution of deforming evaporating droplets at intermediate Reynolds numbers. Numer. Heat Transfer, Part A, 26:253–272, 1994.

    ADS  Google Scholar 

  42. R.J. Haywood, M. Renksizbulut, & G.D. Raithby. Transient deformation and evaporation of droplets at intermediate Reynolds numbers. Int. J. Heat Mass Transfer, 37:1401–1410, 1994.

    MATH  Google Scholar 

  43. K. Hijikata, Y. Mori, & S. Kawaguchi. Direct contact condensation of vapor on falling cooled droplets. Int. J. Heat Mass Transfer, 27:1631–1640, 1984.

    Google Scholar 

  44. L.J. Huang & P.S. Ayyaswamy. The drag coefficients associated with a moving liquid drop experiencing condensation. ASME J. Heat Transfer, 109:1003–1006, 1987.

    Google Scholar 

  45. L.J. Huang & P.S. Ayyaswamy. Heat and mass transfer associated with a spray drop experiencing condensation: A fully transient analysis. Int. J. Heat Mass Transfer, 30(5):881–891, 1987.

    MATH  Google Scholar 

  46. L.J. Huang & P.S. Ayyaswamy. Heat transfer of a nuclear reactor containment spray drop. J. Nucl. Engrg. Design, 101:137–148, 1987.

    Google Scholar 

  47. L.J. Huang & P.S. Ayyaswamy. Evaporation of a moving liquid droplet: Solutions for intermediate Reynolds numbers. Int. Comm. Heat Mass Transfer, 17(1):27–38, 1990.

    Google Scholar 

  48. L.J. Huang & P.S. Ayyaswamy. Effect of insoluble surfactants in condensation on a moving drop. ASME J. Heat Transfer, 113(l):232–236, 1991.

    Google Scholar 

  49. K.H. Huebner. The Finite Element Method for Engineers. Wiley, New York, 1975.

    Google Scholar 

  50. H.R. Jacobs. Direct contact heat transfer for process technologies. ASME J. Heat Transfer, 110:1259–1270, 1988.

    Google Scholar 

  51. J.D. Jin & G.L. Borman. A model for multicomponent droplet vaporization at high ambient pressures. Combust. Emission Anal., P-162:213–223, 1985.

    Google Scholar 

  52. M.A. Jog, P.S. Ayyaswamy, & I.M. Cohen. Evaporation and combustion of a slowly moving liquid fuel droplet: Higher order theory. J. Fluid Mech., 307:135–165,1996.

    ADS  MATH  Google Scholar 

  53. L.E. Johns & R.B. Beckmann. Mechanism of dispersed-phase mass transfer in viscous, single-drop extraction systems. AIChE J., 12:10–16, 1966.

    Google Scholar 

  54. M. Joseph. Finite difference representations of vorticity transport. Comput. Methods Appl. Mech. Engrg., 39:107–116, 1983.

    MathSciNet  ADS  MATH  Google Scholar 

  55. L. Krishnamurthy, F.A. Williams, & K. Seshadri. Asymptotic theory of diffusion flame extinction in the stagnation point boundary layer. Combustion and Flame, 26:363–377, 1976.

    Google Scholar 

  56. R. Kronig & J.C. Brink. On the theory of extraction from falling droplets. Appl. Sci. Res. Ser. A, 2:142–155, 1950.

    Google Scholar 

  57. H. Lamb. Hydrodynamics. Cambridge University Press, 6th edn., 1932. Reprinted, Dover, New York, 1945.

    Google Scholar 

  58. P. Lara-Urbaneja & W.A. Sirignano. Theory of transient multicomponent vaporization in a convective field. In Proc. Eighteenth Symposium (Int.) on Combustion, pages 1365–1374. The Combustion Institute, 1981.

    Google Scholar 

  59. J.C. Lasheras, A.C. Fernandez-Pello, & F.L. Dryer. Experimental observations on the disruptive combustion of free droplets of multicomponent fuels. Combust. Sci. Technol, 22:195–209, 1980.

    Google Scholar 

  60. C.K. Law. Internal boiling and superheating in vaporizing multicomponent droplets. AIChE J., 24(4):626–632, 1978.

    Google Scholar 

  61. C.K. Law, S. Prakash, & W.A. Sirignano. Theory of convective, transient, multicomponent droplet vaporization. In Sixteenth Symposium (Int.) on Combustion, pages 605–617. The Combustion Institute, 1977.

    Google Scholar 

  62. B.P LeClair, A.E. Hamielec, & H.R. Pruppacher. A numerical study of the drag on a sphere at low and intermediate Reynolds numbers. J. Atmospheric Sci., 27:308–315, 1970.

    ADS  Google Scholar 

  63. B.P. LeClair, A.E. Hamielec, H.R. Pruppacher, & W.D. Hall. A theoretical and experimental study of the internal circulation in water drops falling at terminal velocity in air. J. Atmospheric Sci., 29:728–740, 1972.

    ADS  Google Scholar 

  64. R. Letan. Liquid-liquid processes. In Direct Contact Heat Transfer (Eds.: F. Kreith & R.F. Boehm), pages 83–116. Hemisphere, New York, 1988.

    Google Scholar 

  65. V.G. Levich. Motion of gaseous bubbles with high Reynolds numbers (in Russian). Zh. Èksper. Teoret. Fiz., 19:18–24, 1949.

    Google Scholar 

  66. V.G. Levich. Physicochemical Hydrodynamics. Prentice-Hall, Englewood Cliffs, NJ, 1962.

    Google Scholar 

  67. CM. Megaridis & W.A. Sirignano. Numerical modeling of a vaporizing multicomponent droplet. In Twenty-Third Symposium (Intl.) on Combustion, pages 1413–1421. The Combustion Institute, 1991.

    Google Scholar 

  68. CM. Megaridis & W.A. Sirignano. Multicomponent droplet vaporization in a laminar convective environment. Combust. Sci. Technol., 87:27–44, 1992.

    Google Scholar 

  69. D.W. Moore. The boundary layer on a spherical gas bubble. J. Fluid Mech., 16: 161–176, 1963.

    MathSciNet  ADS  MATH  Google Scholar 

  70. R. Natarajan & T.A. Brzustowski. New observations on the combustion of hydrocarbon droplets at elevated pressures. Combust. Sci. Technol, 2:259–269, 1970.

    Google Scholar 

  71. A.B. Newman. The drying of porous solids: Diffusion and surface emission equations. Trans. AIChE, 27:203–220, 1931.

    Google Scholar 

  72. H.D. Nguyen, S. Paik, & J.N. Chung. Unsteady conjugate heat transfer associated with a translating spherical droplet: A direct numerical simulation. Numer. Heat Transfer, Part A, 24:161–180, 1993.

    ADS  Google Scholar 

  73. D.L.R. Oliver & J.N. Chung. Steady flow inside and around a fluid sphere at low Reynolds numbers. J. Fluid Mech., 154:215–230, 1985.

    ADS  MATH  Google Scholar 

  74. D.L.R. Oliver & J.N. Chung. Conjugate unsteady heat transfer from a spherical droplet at low Reynolds numbers. Int. J. Heat Mass Transfer, 29:879–887, 1986.

    ADS  MATH  Google Scholar 

  75. D.L.R. Oliver & J.N. Chung. Flow about a fluid sphere at low to moderate Reynolds numbers. J. Fluid Mech., 177:1–18, 1987.

    ADS  MATH  Google Scholar 

  76. D.L.R. Oliver & J.N. Chung. Unsteady conjugate heat transfer from a translating fluid sphere at moderate Reynolds numbers. Int. J. Heat Mass Transfer, 33:401–408, 1990.

    Google Scholar 

  77. D.L.R. Oliver & K.J. De Witt. Mass transfer from fluid spheres at moderate Reynolds numbers: A boundary layer analysis. In 30th Aerospace Sciences Meeting & Exhibtn., AIAA Paper No. 92–0105, 1992.

    Google Scholar 

  78. D.L.R. Oliver & K.J. De Witt. High Péclet number heat transfer from a droplet suspended in an electric field: Interior problem. Int. J. Heat Mass Transfer, 36:3153–3155, 1993.

    MATH  Google Scholar 

  79. S.V. Patankar. Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, 1980.

    MATH  Google Scholar 

  80. G. Patnaik, W.A. Sirignano, H.A. Dwyer, & B.R. Sanders. A numerical technique for the solution of a vaporizing fuel droplet. In Dynamics of Reactive Systems, Part II: Modeling and Heterogeneous Combustion (Eds.: J.R. Bowen et al.), pages 253–266. American Institute of Aeronautics and Astronautics, 1986.

    Google Scholar 

  81. M. Peric, R. Kessler, & G. Scheurer. Comparison of finite-volume numerical methods with staggered and colocated grids. Computers and Fluids, 16:389–403, 1988.

    ADS  MATH  Google Scholar 

  82. M.S. Plesset & A. Prosperetti. Bubble dynamics and cavitation. J. Appl. Mech., 16:277–282, 1979.

    Google Scholar 

  83. C. Pozrikidis. The nonlinear instability of Hill’s vortex. J. Fluid Mech., 168:337–367, 1986.

    ADS  MATH  Google Scholar 

  84. S. Prakash & W.A. Sirignano. Liquid fuel drop heating with internal circulation. Int. J. Heat Mass Transfer, 21:885–895, 1978.

    Google Scholar 

  85. S. Prakash & W.A. Sirignano. Theory of convective droplet vaporization with unsteady heat transfer in the circulating phase. Int. J. Heat Mass Transfer, 23:253–268, 1980.

    MATH  Google Scholar 

  86. H.R. Pruppacher & J.D. Klett. Microphysics of Clouds and Precipitation. Reidel, Boston, 1980.

    Google Scholar 

  87. H.R. Pruppacher & R.L. Pitter. A semi-empirical determination of the shape of cloud and rain drops. J. Atmospheric Sci., 28:86–94, 1971.

    ADS  Google Scholar 

  88. H.R. Pruppacher & R. Rasmussen. A wind tunnel investigation of the rate of evaporation of large water drops falling at terminal velocity in air. J. Atmospheric Sci., 36:1255–1260, 1979.

    ADS  Google Scholar 

  89. R.H. Rangel & A.C. Femandez-Pello. Mixed convective droplet combustion with internal circulation. Combust. Sci. Technol., 42:47–65, 1984.

    Google Scholar 

  90. W.E. Ranz & W. Marshall. Evaporation from drops. Chem. Engrg. Progr, 48:137–180, 1952.

    Google Scholar 

  91. M. Renksizbulut & M. Bussmann. Multicomponent droplet evaporation at intermediate Reynolds numbers. Int. J. Heat Mass Transfer, 36(11):2827–2835, 1993.

    Google Scholar 

  92. M. Renksizbulut & R.J. Haywood. Transient droplet evaporation with variable properties and internal circulation at intermediate Reynolds numbers. Int. J. Multiphase Flow, 14:189–202, 1988.

    MATH  Google Scholar 

  93. M. Renksizbulut, R. Nafziger, & X. Li. A mass transfer correlation for droplet evaporation in high-temperature flows. Chem. Engrg. Sci, 46(9):2351–2358, 1991.

    Google Scholar 

  94. M. Renksizbulut & M.C. Yuen. Experimental study of droplet evaporation in a high-temperature air stream. ASME J. Heat Transfer, 105(2):384–388, 1983.

    Google Scholar 

  95. M. Renksizbulut & M.C. Yuen. Numerical study of droplet evaporation in a high-temperature stream. ASME J. Heat Transfer, 105(2):389–397, 1983.

    Google Scholar 

  96. V. Y. Rivkind & G.M. Ryskin. Flow structure in motion of a spherical drop in a fluid medium at intermediate Reynolds numbers. Fluid Dynamics (English translation of: Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza), 11:5–12, 1976.

    ADS  Google Scholar 

  97. V.Y. Rivkind, G.M. Ryskin, & G.A. Fishbein. Flow around a spherical drop at intermediate Reynolds number. Appl. Math. Mech., 40:687–691, 1976.

    MATH  Google Scholar 

  98. G. Ryskin & L.G. Leal. Numerical solution of free-boundary value problems in fluid mechanics. Part I: The finite difference technique. J. Fluid Mech., 148:1–17, 1984.

    ADS  MATH  Google Scholar 

  99. G. Ryskin & L.G. Leal. Numerical solution of free-boundary value problems in fluid mechanics. Part II: Buoyancy-driven motion of a gas bubble through a quiescent liquid. J. Fluid Mech., 148:19–35, 1984.

    ADS  MATH  Google Scholar 

  100. G.M. Ryskin & G.A. Fishbein. Extrinsic problem of mass exchange for a solid sphere and a drop at high Péclet numbers and Re⩽ 100. J. Engrg. Phys., 30:49–52, 1976.

    Google Scholar 

  101. W.A. Sirignano. Theory of multicomponent fuel droplet vaporization. Arch. Thermodyn. Combust., 9:235–251, 1979.

    Google Scholar 

  102. W.A. Sirignano. Fluid dynamics of sprays-1992 Freeman scholar lecture. ASME J. Fluids Engrg., 115:345–378, 1993.

    Google Scholar 

  103. J.C. Strikwerda Upwind differencing, false scaling and nonphysical solutions to the driven-cavity problem. J. Comput. Phys., 47:303–307, 1982.

    MathSciNet  ADS  MATH  Google Scholar 

  104. T. Sundararajan & P.S. Ayyaswamy. Hydrodynamics and heat transfer associated with condensation on a moving drop: Solutions for intermediate Reynolds numbers. J. Fluid Mech., 149:33–58, 1984.

    ADS  MATH  Google Scholar 

  105. T. Sundararajan & P.S. Ayyaswamy. Condensation on a moving drop: Effect of time-dependent drop velocity. In Proc. Eighth National Heat and Mass Transfer Conference, volume HMT-E17–85, pages 453–459, Visakhapatnam, India, 1985.

    Google Scholar 

  106. T. Sundararajan & P.S. Ayyaswamy. Heat and mass transfer associated with condensation on a moving drop: Solutions for intermediate Reynolds numbers by a boundary layer formulation. ASME J. Heat Transfer, 107(2):409–416, 1985.

    ADS  Google Scholar 

  107. T. Sundararajan & P.S. Ayyaswamy. Numerical evaluation of heat and mass transfer to a moving liquid drop experiencing condensation. Numer. Heat Transfer, 8(6): 689–706, 1985.

    ADS  Google Scholar 

  108. D.G. Talley & S.C. Yao. A semi-empirical approach to thermal and composition transients inside vaporizing fuel droplets. In Twenty-First Symposium (Int.) on Combustion, pages 609–616. The Combustion Institute, 1986.

    Google Scholar 

  109. J.D. Taiman. Special Functions. Benjamin, New York, 1968.

    Google Scholar 

  110. T.G. Theofanous, L. Biasi, H.S. Isbin, & H.K. Fauske. Nonequilibrium bubble collapse — a theoretical study. In Chem. Engrg. Progr. Symp. Ser., volume 66, No. 102, pages 37–47. AIChE, 1970.

    Google Scholar 

  111. J.F. Thompson, F.C. Thames, & C.W. Mastin. Boundary-fitted curvilinear coordinate system for solution of partial differential equations on fields containing any number of arbitrary two-dimensional bodies. Technical Report CR-2729, NASA, 1976.

    Google Scholar 

  112. A.Y. Tong & W.A. Sirignano. Analytical solution for diffusion and circulation in a vaporizing droplet. In Nineteenth Symposium (Int.) on Combustion, pages 1007–1020. The Combustion Institute, 1982.

    Google Scholar 

  113. A.Y. Tong & W.A. Sirignano. Transient thermal boundary layer in heating of droplet with internal circulation: Evaluation of assumptions. Combust. Sci. Technol., 11:87–94, 1982.

    ADS  Google Scholar 

  114. A.Y. Tong & W.A. Sirignano. Analysis of vaporizing droplet with slip, internal circulation, and unsteady liquid phase and quasi steady gas phase heat transfer. In ASME-JSME Thermal Engineering Joint Conference, Honolulu, Hawaii, 1983.

    Google Scholar 

  115. A.Y. Tong & W.A. Sirignano. Multicomponent droplet vaporization in a high temperature gas. Combustion and Flame, 66:221–235, 1986.

    ADS  Google Scholar 

  116. A.Y. Tong & W.A. Sirignano. Multicomponent transient droplet vaporization with internal circulation: Integral equation formulation and approximation solution. Numer. Heat Transfer, 10:253–278, 1986.

    ADS  MATH  Google Scholar 

  117. C.H. Wang, X.Q. Liu, & C.K. Law. Combustion and microexplosion of freely falling multicomponent droplets. Combustion and Flame, 56:175–197, 1984.

    Google Scholar 

  118. H. Watada, A.E. Hamielec, & A.I. Johnson. A theoretical study of mass transfer with chemical reaction in drops. Can. J. Chem. Engrg., 48:255–260, 1970.

    Google Scholar 

  119. R.M. Wellek, W.V. Andoe, & R.J. Brunson. Mass transfer with chemical reaction inside single droplets and gas bubbles: Mathematical mechanisms. Can. J. Chem. Engrg., 48:645–655, 1970.

    Google Scholar 

  120. C.K. Westbrook. A generalized ICE method for chemically reactive flows in combustion systems. J. Comput. Sci., 29:67–80, 1978.

    ADS  MATH  Google Scholar 

  121. S. Winnikow & B.T. Chao. Droplet motion in purified systems. Phys. Fluids, 9:50–61, 1966.

    ADS  Google Scholar 

  122. S.E. Woo & A.E. Hamielec. A numerical method of determining the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmospheric Sci., 28:1448–1454, 1971.

    ADS  Google Scholar 

  123. X. Wu, C.K. Law, & A.C. Fernandez-Pello. A unified criterion for convective extinction of fuel particles. Combustion and Flame, 44:113–124, 1982.

    Google Scholar 

  124. S.C. Yao & V.E. Schrock. Heat and mass transfer from freely falling drops. ASME J. Heat Transfer, 98:120–126, 1976.

    Google Scholar 

  125. L.T. Yap, I.M. Kennedy, & F.L. Dryer. Disruptive and micro-explosive combustion of free droplets in highly convective environments. Combust. Sci. Technol., 41:291–313, 1984.

    Google Scholar 

  126. M.C. Yuen & L.W. Chen. On drag of evaporating liquid droplets. Combust. Sci. Technol., 14:147–154, 1976.

    Google Scholar 

  127. M.C. Yuen & L.W. Chen. Heat transfer measurements of evaporating liquid droplets. Int. J. Heat Mass Transfer, 21:537–542, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Sadhal, S.S., Ayyaswamy, P.S., Chung, J.N. (1997). Transport at Intermediate and High Reynolds Numbers. In: Transport Phenomena with Drops and Bubbles. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4022-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4022-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8470-3

  • Online ISBN: 978-1-4612-4022-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics