Advertisement

The Weak-Noise Characteristic Boundary Exit Problem: Old and New Results

  • R. S. Maier
  • D. L. Stein
Part of the Institute for Nonlinear Science book series (INLS)

Abstract

The problem of noise-induced escape from a metastable state arises in many areas of science. If the dynamics of the system under investigation are specified by a nongradient drift field, many classical results on the weak-noise limit do not apply. The absence of gradient deterministic dynamics can lead to rarely considered, nonintuitive phenomena, such as most probable exit paths from a domain of attraction that terminate at unstable fixed points (mountain peaks) rather than the usual saddle points; non-Gaussian limiting distributions of exit points; and the appearance of focusing singularities along the most probable exit paths. We discuss these novel phenomena.

Keywords

Saddle Point Unstable Manifold Detailed Balance Stable Fixed Point Mountain Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Landauer, Helv. Phys. Acta 56, 847 (1983).Google Scholar
  2. [2]
    R. Landauer, J. Stat. Phys. 53, 233 (1988).ADSCrossRefGoogle Scholar
  3. [3]
    P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).ADSCrossRefGoogle Scholar
  4. [4]
    B.Z. Bobrovsky and O. Zeitouni, Stochastic Process. Appl. 41, 241 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M.V. Day, in Diffusion Processes and Related Problems in Analysis, vol. 1, edited by M. Pinsky (Birkhäuser, Boston, 1990).Google Scholar
  6. [6]
    M.V. Day, Cycling and skewing of exit measures for planar systems, Preprint, 1993.Google Scholar
  7. [7]
    R. Graham, in Theory of Continuous Fokker-Planck Systems, edited by F. Moss and P.V.E. McClintock, vol. 1 of Noise in Nonlinear Dynamical Systems (Cambridge University Press, Cambridge, 1989).Google Scholar
  8. [8]
    T. Naeh, M.M. Klosek, B.J. Matkowsky, and Z. Schuss, SIAM J. Appl. Math. 50, 595(1990).MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    P. Talkner, Z. Phys. B 68, 201 (1987).MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    R.S. Maier and D.L. Stein, Phys. Rev. Lett. 69, 3691 (1991).ADSCrossRefGoogle Scholar
  11. [11]
    R.S. Maier and D.L. Stein, Phys. Rev. Lett. 71, 1783 (1993).ADSCrossRefGoogle Scholar
  12. [12]
    R.S. Maier and D.L. Stein, Phys. Rev. E 48, 931 (1993).ADSCrossRefGoogle Scholar
  13. [13]
    R. Graham, Z. Phys. B 26, 281 (1977).ADSCrossRefGoogle Scholar
  14. [14]
    B.H. Lavenda, Nonequilibrium Statistical Thermodynamics (Wiley, New York, 1985).zbMATHGoogle Scholar
  15. [15]
    R. Landauer, Physica A 194, 551 (1993).ADSCrossRefGoogle Scholar
  16. [16]
    V.A. Chinarov, M.I. Dykman, and V.N. Smelyanskiy, Phys. Rev. E 47, 2448 (1993).ADSCrossRefGoogle Scholar
  17. [17]
    L.S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981).zbMATHGoogle Scholar
  18. [18]
    R.S. Burington and D.C. May, Handbook of Probability and Statistics with Tables, 2nd ed. (McGraw-Hill, New York, 1970).zbMATHGoogle Scholar
  19. [19]
    V.F. Baibuz, V.Y. Zitserman, and A.N. Drozdov, Physica A 127, 173 (1984).ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Suzuki, J. Stat. Phys. 16, 477 (1977).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • R. S. Maier
  • D. L. Stein

There are no affiliations available

Personalised recommendations